On a~geometric interpretation of the sine-Gordon formula
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 37-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_7_a5,
     author = {N. E. Maryukova},
     title = {On a~geometric interpretation of the {sine-Gordon} formula},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--40},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_7_a5/}
}
TY  - JOUR
AU  - N. E. Maryukova
TI  - On a~geometric interpretation of the sine-Gordon formula
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 37
EP  - 40
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_7_a5/
LA  - ru
ID  - IVM_2000_7_a5
ER  - 
%0 Journal Article
%A N. E. Maryukova
%T On a~geometric interpretation of the sine-Gordon formula
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 37-40
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_7_a5/
%G ru
%F IVM_2000_7_a5
N. E. Maryukova. On a~geometric interpretation of the sine-Gordon formula. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 37-40. http://geodesic.mathdoc.fr/item/IVM_2000_7_a5/

[1] Gilbert D., Osnovaniya geometrii, OGIZ, M.–L., 1948, 491 pp.

[2] Chebyshev P. L., “O kroike odezhdy”, PSS, T. 5, AN SSSR, M.–L., 1951, 165–170

[3] Poznyak E. G., “Geometricheskie issledovaniya, svyazannye s uravneniem $z_{xy}=\sin z$”, Itogi nauki i tekhn. VINITI. Probl. geometrii, 8, 1977, 225–241 | Zbl

[4] Poznyak E. G., Popov A. G., “Geometriya uravneniya $\sin$-Gordona”, Itogi nauki i tekhn. VINITI. Probl. geometrii, 23, 1991, 99–130 | MR

[5] Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo i fizika”, Izv. vuzov. Matematika, 1994, no. 3, 44–49 | MR | Zbl

[6] Popov A. G., “Geometricheskii metod tochnogo integrirovaniya ellipticheskogo uravneniya Liuvillya $\Delta u=e^u$”, Vestn. Mosk. un-ta. Ser. matem. mekhan., 1995, no. 3, 82–84 | Zbl

[7] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969, 547 pp. | MR