An individual ergodic theorem for contractions in the Banach--Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 81-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_7_a13,
     author = {V. I. Chilin and I. G. Ganiev},
     title = {An individual ergodic theorem for contractions in the {Banach--Kantorovich} lattice $L_p(\widehat\nabla,\widehat\mu)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--83},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_7_a13/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - I. G. Ganiev
TI  - An individual ergodic theorem for contractions in the Banach--Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 81
EP  - 83
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_7_a13/
LA  - ru
ID  - IVM_2000_7_a13
ER  - 
%0 Journal Article
%A V. I. Chilin
%A I. G. Ganiev
%T An individual ergodic theorem for contractions in the Banach--Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 81-83
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_7_a13/
%G ru
%F IVM_2000_7_a13
V. I. Chilin; I. G. Ganiev. An individual ergodic theorem for contractions in the Banach--Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 81-83. http://geodesic.mathdoc.fr/item/IVM_2000_7_a13/

[1] Sarymsakov T. A., Rubshtein B. A., Chilin V. I., “Polnye tenzornye proizvedeniya topologicheskikh polupolei”, DAN SSSR, 216:6 (1974), 1226–1228 | MR | Zbl

[2] Sarymsakov T. A., Ayupov Sh. A., Khadzhiev Dzh., Chilin V. I., Uporyadochennye algebry, Fan, Tashkent, 1983, 304 pp. | MR | Zbl

[3] Sarymsakov T. A., Topologicheskie polupolya i ikh prilozheniya, Fan, Tashkent, 1989, 192 pp. | MR | Zbl

[4] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985, 256 pp. | MR | Zbl

[5] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv. Lineinye operatory, soglasovannye s poryadkom”, Tr. RAN Sib. otd. in-ta matem., 29, 1995, 63–211 | MR | Zbl

[6] Ganiev I. G., “O vektornykh merakh so znacheniyami v prostranstvakh Banakha–Kantorovicha”, Izv. vuzov. Matematika, 1999, no. 4, 65–67 | MR

[7] Ganiev I. G., “Izmerimye bulevy rassloeniya”, Tez. III Sib. kongr. po prikl. i industr. matem., Ch. 1, Novosibirsk, 1998, 65

[8] Ganiev I. G., “Izmerimye rassloeniya metrizuemykh topologicheskikh vektornykh reshetok”, DAN RUz., 1999, no. 3, 8–11 | Zbl

[9] Krendel U., Ergodic Theorems, Walter de Gruyter, Berlin–N. Y., 1985, 357 pp. | MR

[10] Sarymsakov T. A., Polupolya i teoriya veroyatnostei, Fan, Tashkent, 1980, 94 pp. | MR