Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 3-5
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2000_7_a0,
author = {A. V. Vinnik and S. G. Leiko},
title = {Isoperimetric rotational extremals on two-dimensional connected {Lie} groups with invariant {Riemannian} metrics},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--5},
year = {2000},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2000_7_a0/}
}
TY - JOUR AU - A. V. Vinnik AU - S. G. Leiko TI - Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 3 EP - 5 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2000_7_a0/ LA - ru ID - IVM_2000_7_a0 ER -
%0 Journal Article %A A. V. Vinnik %A S. G. Leiko %T Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2000 %P 3-5 %N 7 %U http://geodesic.mathdoc.fr/item/IVM_2000_7_a0/ %G ru %F IVM_2000_7_a0
A. V. Vinnik; S. G. Leiko. Isoperimetric rotational extremals on two-dimensional connected Lie groups with invariant Riemannian metrics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 3-5. http://geodesic.mathdoc.fr/item/IVM_2000_7_a0/
[1] Leiko S. G., “Variatsionnye zadachi dlya funktsionalov povorota i spin-otobrazheniya psevdorimanovykh prostranstv”, Izv. vuzov. Matematika, 1990, no. 10, 9–17 | MR
[2] Leiko S. G., “Izoperimetricheskie ekstremali povorota na poverkhnostyakh v evklidovom prostranstve $E^3$”, Izv. vuzov. Matematika, 1996, no. 6, 25–32 | MR | Zbl
[3] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhn. VINITI. Sovremen. probl. matem., 41, 1990, 254 pp. | MR | Zbl
[4] Shapukov B. N., Zadachi po gruppam Li, Ucheb. posobie, Izd-vo. Kazansk. un-ta, 1989, 152 pp. | MR
[5] Bukreev B. Ya., Planimetriya Lobachevskogo v analiticheskom izlozhenii, GITL, M.–L., 1951, 127 pp. | MR