Suboptimal control of semilinear elliptic equations with phase constraints.~I. The maximum principle for minimizing sequences and normality
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2000), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_6_a4,
     author = {M. I. Sumin},
     title = {Suboptimal control of semilinear elliptic equations with phase {constraints.~I.} {The} maximum principle for minimizing sequences and normality},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--44},
     publisher = {mathdoc},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_6_a4/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Suboptimal control of semilinear elliptic equations with phase constraints.~I. The maximum principle for minimizing sequences and normality
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 33
EP  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_6_a4/
LA  - ru
ID  - IVM_2000_6_a4
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Suboptimal control of semilinear elliptic equations with phase constraints.~I. The maximum principle for minimizing sequences and normality
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 33-44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_6_a4/
%G ru
%F IVM_2000_6_a4
M. I. Sumin. Suboptimal control of semilinear elliptic equations with phase constraints.~I. The maximum principle for minimizing sequences and normality. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2000), pp. 33-44. http://geodesic.mathdoc.fr/item/IVM_2000_6_a4/

[1] Mackenroth U., “On some elliptic optimal control problems with state constraints”, Optim., 17 (1986), 595–607 | DOI | MR | Zbl

[2] Abergel F., Temam R., “Optimality conditions for some non-qualified problems of distributed control”, SIAM J. Control Optim., 27:1 (1989), 1–12 | DOI | MR | Zbl

[3] Bergounioux M., “A penalization method for optimal control of elliptic problems with state constraints”, SIAM J. Control Optim., 30:2 (1992), 305–323 | DOI | MR | Zbl

[4] Bonans J. F., “Pontryagin's principle for the optimal control of semilinear elliptic systems with state constraints”, 30th IEEE Conference on Control and Decision (Brighton, England), 1991, 1976–1979

[5] Bonans J. F., Casas E., “Un principe de Pontryagine pour le contrôle des systèmes elliptiques”, J. Different. Equat., 90 (1991), 288–303 | DOI | MR

[6] Bonans J. F., Casas E., “A boundary Pontryagin's principle for the optimal control of state constrained elliptic systems”, Intern. Series of Num. Math., 107, Birkhäuser Verlag, Basel, 1992, 241–249

[7] Casas E., “Boundary control of semilinear elliptic equations with pointwise state constraints”, SIAM J. Control Optim., 31:4 (1993), 993–1006 | DOI | MR | Zbl

[8] Bonans J. F., Casas E., “An extension of Pontryagin's principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities”, SIAM J. Control Optim., 33:1 (1995), 274–298 | DOI | MR

[9] Alibert J. J., Raymond J. P., Optimal control problems governed by semilinear elliptic equations with pointwise state constraints, Preprint, 1994

[10] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[11] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami”, Sb. dokl. 1-i mezhdunar. konf. “Matematicheskie algoritmy” (N. Novgorod, 14–19 avgusta 1994 g.), Izd-vo Nizhegorodsk. un-ta, N. Novgorod, 1995, 116–125

[12] Sumin M. I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl

[13] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zhurn. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl

[14] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: svoistva normalnosti, subgradientnyi dvoistvennyi metod”, Zhurn. vychisl. matem. i matem. fiz., 37:2 (1997), 162–178 | MR | Zbl

[15] Sumin M. I., “O minimiziruyuschikh posledovatelnostyakh v zadachakh optimalnogo upravleniya pri ogranichennykh fazovykh koordinatakh”, Differents. uravneniya, 22:10 (1986), 1719–1731 | MR

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 736 pp. | MR

[17] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[18] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[19] Sumin M. I., “Optimalnoe upravlenie ob'ektami, opisyvaemymi kvazilineinymi ellipticheskimi uravneniyami”, Differents. uravneniya, 25:8 (1989), 1406–1416 | MR