Integrable $\pi$-structure with a symmetric second covariant derivative of an affinor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2000), pp. 79-82
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2000_5_a12,
author = {G. N. Timofeev},
title = {Integrable $\pi$-structure with a~symmetric second covariant derivative of an affinor},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {79--82},
year = {2000},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2000_5_a12/}
}
G. N. Timofeev. Integrable $\pi$-structure with a symmetric second covariant derivative of an affinor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2000), pp. 79-82. http://geodesic.mathdoc.fr/item/IVM_2000_5_a12/
[1] Timofeev G. N., “Invariantnye priznaki spetsialnykh kompozitsii v prostranstvakh Veilya”, Izv. vuzov. Matematika, 1976, no. 1, 87–99 | MR | Zbl
[2] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR
[3] Leontev E. K., “O chebyshevskikh kompozitsiyakh”, Uchen. zap. Kazansk. un-ta, 126:1 (1966), 23–40 | MR
[4] Timofeev G. N., “Ortogonalnye kompozitsii v prostranstvakh Veilya”, Izv. vuzov. Matematika, 1976, no. 3, 73–85 | MR | Zbl