A~new approach to the solution of the Hilbert boundary value problem for an analytic function in a~multiply connected domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 60-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_2_a8,
     author = {R. B. Salimov},
     title = {A~new approach to the solution of the {Hilbert} boundary value problem for an analytic function in a~multiply connected domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--64},
     publisher = {mathdoc},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_2_a8/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - A~new approach to the solution of the Hilbert boundary value problem for an analytic function in a~multiply connected domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 60
EP  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_2_a8/
LA  - ru
ID  - IVM_2000_2_a8
ER  - 
%0 Journal Article
%A R. B. Salimov
%T A~new approach to the solution of the Hilbert boundary value problem for an analytic function in a~multiply connected domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 60-64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_2_a8/
%G ru
%F IVM_2000_2_a8
R. B. Salimov. A~new approach to the solution of the Hilbert boundary value problem for an analytic function in a~multiply connected domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_2000_2_a8/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968, 511 pp. | MR

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[3] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovykh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[4] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR