The Hardy--Littlewood problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_2_a5,
     author = {A. A. Zhukova},
     title = {The {Hardy--Littlewood} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--49},
     publisher = {mathdoc},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_2_a5/}
}
TY  - JOUR
AU  - A. A. Zhukova
TI  - The Hardy--Littlewood problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 41
EP  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_2_a5/
LA  - ru
ID  - IVM_2000_2_a5
ER  - 
%0 Journal Article
%A A. A. Zhukova
%T The Hardy--Littlewood problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 41-49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_2_a5/
%G ru
%F IVM_2000_2_a5
A. A. Zhukova. The Hardy--Littlewood problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 41-49. http://geodesic.mathdoc.fr/item/IVM_2000_2_a5/

[1] Hardy G. H., Littlewood J. E., “Some problems of partitio numerorum. III: On the expression of a number as a sum of primes”, Acta math., 44 (1922), 1–70 | DOI | MR | Zbl

[2] Hooly C., “On the representation of numbers as the sum of two squares and a prime”, Acta math., 97 (1957), 189–210 | DOI | MR

[3] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, L., 1961, 207 pp.

[4] Bredikhin B. M., “Binarnye additivnye problemy neopredelennogo tipa, II”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 577–612 | Zbl

[5] Piyadina Zh. V., “Ob odnom analoge uravneniya Khardi–Littlvuda”, Matem. zametki, 46:3 (1989), 58–67 | MR | Zbl

[6] Timofeev N. M., “Problema Khardi–Littlvuda dlya chisel, imeyuschikh zadannoe chislo prostykh delitelei”, Izv. RAN. Ser. matem., 59:6 (1995), 181–206 | MR | Zbl

[7] Zhukova A. A., Teoremy tipa A. I. Vinogradova–Bomberi dlya chisel s zadannym chislom prostykh delitelei, Dep. v VINITI 28.03.96, No 1022-V96, Vladimirsk. gos. ped. un-t, Vladimir, 1996, 28 pp.

[8] Levin B. V., Timofeev N. M., “Raspredelenie arifmeticheskikh funktsii v srednem po progressiyam (teoremy tipa Vinogradova–Bomberi)”, Matem. sb., 125:4 (1984), 558–572 | MR | Zbl

[9] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987, 415 pp. | MR

[10] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971, 159 pp. | MR

[11] Elliot P. D. T. A., Probabilistic number theory, I, Grundlehren der mathematischen Wissenschaften, 239, Springer-Verlag, N. Y., 1979, 360 pp. | MR | Zbl

[12] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987, 136 pp. | MR

[13] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 512 pp. | MR