On a~class of strong differential models over a~countable set of dynamic processes of finite character
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_2_a4,
     author = {A. V. Daneev and V. A. Rusanov},
     title = {On a~class of strong differential models over a~countable set of dynamic processes of finite character},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--40},
     publisher = {mathdoc},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/}
}
TY  - JOUR
AU  - A. V. Daneev
AU  - V. A. Rusanov
TI  - On a~class of strong differential models over a~countable set of dynamic processes of finite character
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 32
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/
LA  - ru
ID  - IVM_2000_2_a4
ER  - 
%0 Journal Article
%A A. V. Daneev
%A V. A. Rusanov
%T On a~class of strong differential models over a~countable set of dynamic processes of finite character
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 32-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/
%G ru
%F IVM_2000_2_a4
A. V. Daneev; V. A. Rusanov. On a~class of strong differential models over a~countable set of dynamic processes of finite character. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 32-40. http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/

[1] Daneev A. V., Rusanov V. A., “Ob odnoi teoreme suschestvovaniya silnoi modeli”, Avtomatika i telemekhanika, 1995, no. 8, 64–73 | MR | Zbl

[2] Vassilyev S. N., Rusanov V. A., Daneev A. V., “About automatic construction of mathematical models by methods of structural and parametrical identification”, Proc. Symp. Appl. Math. and Optimization. CESA'96 IMACS-IEE/SMC Multiconference. Comput.eng. in systems appl. (Lille, France, 1996), 27–31

[3] Daneev A. V., Rusanov V. A., “Geometricheskie kharakteristiki svoistv suschestvovaniya konechnomernykh $(A, B)$-modelei v zadachakh strukturno-parametricheskoi identifikatsii”, Avtomatika i telemekhanika, 1999, no. 1, 3–8 | MR | Zbl

[4] Lakeyev A. V., Rusanov V. A., “On existence of linear nonstationary partially realizing models”, Proc. Symp. Appl. Math. and Optimization. CESA'98 IMACS-IEE/SMC Multiconference. Comput. eng. in systems appl. (Nabeul-Hammamet, Tunisia, 1998), 201–205

[5] Daneev A. V., Rusanov V. A., “Poryadkovye kharakteristiki svoistv suschestvovaniya silnykh lineinykh konechnomernykh differentsialnykh modelei”, Differents. uravneniya, 35:1 (1999), 43–50 | MR | Zbl

[6] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl

[7] Mesarovich M., Takakhara Ya., Obschaya teoriya sistem: matematicheskie osnovy, Mir, M., 1978, 312 pp. | MR

[8] Villems Ya., “Ot vremennógo ryada k lineinoi sisteme”, Teoriya sistem. Matem. metody i modelir., eds. A. N. Kolmogorov, S. P. Novikov, Mir, M., 1989, 8–191

[9] Van der Shaft A., “K teorii realizatsii nelineinykh sistem, opisyvaemykh differentsialnymi uravneniyami vysshego poryadka”, Teoriya sistem. Matem. metody i modelir., eds. A. N. Kolmogorov, S. P. Novikov, Mir, M., 1989, 192–237

[10] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[11] Daneev A. V., Rusanov V. A., “K metodam kachestvennoi teorii identifikatsii slozhnykh dinamicheskikh sistem”, Dokl. RAN, 355:2 (1997), 174–177 | MR | Zbl

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 442 pp. | MR | Zbl