Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_2_a4, author = {A. V. Daneev and V. A. Rusanov}, title = {On a~class of strong differential models over a~countable set of dynamic processes of finite character}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--40}, publisher = {mathdoc}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/} }
TY - JOUR AU - A. V. Daneev AU - V. A. Rusanov TI - On a~class of strong differential models over a~countable set of dynamic processes of finite character JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 32 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/ LA - ru ID - IVM_2000_2_a4 ER -
%0 Journal Article %A A. V. Daneev %A V. A. Rusanov %T On a~class of strong differential models over a~countable set of dynamic processes of finite character %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2000 %P 32-40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/ %G ru %F IVM_2000_2_a4
A. V. Daneev; V. A. Rusanov. On a~class of strong differential models over a~countable set of dynamic processes of finite character. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 32-40. http://geodesic.mathdoc.fr/item/IVM_2000_2_a4/
[1] Daneev A. V., Rusanov V. A., “Ob odnoi teoreme suschestvovaniya silnoi modeli”, Avtomatika i telemekhanika, 1995, no. 8, 64–73 | MR | Zbl
[2] Vassilyev S. N., Rusanov V. A., Daneev A. V., “About automatic construction of mathematical models by methods of structural and parametrical identification”, Proc. Symp. Appl. Math. and Optimization. CESA'96 IMACS-IEE/SMC Multiconference. Comput.eng. in systems appl. (Lille, France, 1996), 27–31
[3] Daneev A. V., Rusanov V. A., “Geometricheskie kharakteristiki svoistv suschestvovaniya konechnomernykh $(A, B)$-modelei v zadachakh strukturno-parametricheskoi identifikatsii”, Avtomatika i telemekhanika, 1999, no. 1, 3–8 | MR | Zbl
[4] Lakeyev A. V., Rusanov V. A., “On existence of linear nonstationary partially realizing models”, Proc. Symp. Appl. Math. and Optimization. CESA'98 IMACS-IEE/SMC Multiconference. Comput. eng. in systems appl. (Nabeul-Hammamet, Tunisia, 1998), 201–205
[5] Daneev A. V., Rusanov V. A., “Poryadkovye kharakteristiki svoistv suschestvovaniya silnykh lineinykh konechnomernykh differentsialnykh modelei”, Differents. uravneniya, 35:1 (1999), 43–50 | MR | Zbl
[6] Kalman R., Falb P., Arbib M., Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. | MR | Zbl
[7] Mesarovich M., Takakhara Ya., Obschaya teoriya sistem: matematicheskie osnovy, Mir, M., 1978, 312 pp. | MR
[8] Villems Ya., “Ot vremennógo ryada k lineinoi sisteme”, Teoriya sistem. Matem. metody i modelir., eds. A. N. Kolmogorov, S. P. Novikov, Mir, M., 1989, 8–191
[9] Van der Shaft A., “K teorii realizatsii nelineinykh sistem, opisyvaemykh differentsialnymi uravneniyami vysshego poryadka”, Teoriya sistem. Matem. metody i modelir., eds. A. N. Kolmogorov, S. P. Novikov, Mir, M., 1989, 192–237
[10] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR
[11] Daneev A. V., Rusanov V. A., “K metodam kachestvennoi teorii identifikatsii slozhnykh dinamicheskikh sistem”, Dokl. RAN, 355:2 (1997), 174–177 | MR | Zbl
[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 442 pp. | MR | Zbl