Universal version of generalized integral constraints in the class of finitely additive measures. II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 69-77
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2000_2_a10,
author = {A. G. Chentsov},
title = {Universal version of generalized integral constraints in the class of finitely additive {measures.~II}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {69--77},
year = {2000},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2000_2_a10/}
}
TY - JOUR AU - A. G. Chentsov TI - Universal version of generalized integral constraints in the class of finitely additive measures. II JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 69 EP - 77 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVM_2000_2_a10/ LA - ru ID - IVM_2000_2_a10 ER -
A. G. Chentsov. Universal version of generalized integral constraints in the class of finitely additive measures. II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2000), pp. 69-77. http://geodesic.mathdoc.fr/item/IVM_2000_2_a10/
[1] Chentsov A. G., “Universalnaya versiya obobschennykh integralnykh ogranichenii v klasse konechno-additivnykh mer, I”, Izv. vuzov. Matematika, 1999, no. 7, 67–74 | MR | Zbl
[2] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR
[3] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, Nauka, Ekaterinburg, 1993, 232 pp.
[4] Chentsov A. G., “Zadacha o postroenii mnozhestv asimptoticheskoi dostizhimosti i ee regulyarizatsiya”, Izv. vuzov. Matematika, 1995, no. 10, 61–75 | MR | Zbl