Quasistability of a~vector nonlinear trajectory problem with the Pareto optimality principle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_12_a4,
     author = {V. A. Emelichev and Yu. v. Stepanishina},
     title = {Quasistability of a~vector nonlinear trajectory problem with the {Pareto} optimality principle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--32},
     publisher = {mathdoc},
     number = {12},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_12_a4/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Yu. v. Stepanishina
TI  - Quasistability of a~vector nonlinear trajectory problem with the Pareto optimality principle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 27
EP  - 32
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_12_a4/
LA  - ru
ID  - IVM_2000_12_a4
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Yu. v. Stepanishina
%T Quasistability of a~vector nonlinear trajectory problem with the Pareto optimality principle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 27-32
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_12_a4/
%G ru
%F IVM_2000_12_a4
V. A. Emelichev; Yu. v. Stepanishina. Quasistability of a~vector nonlinear trajectory problem with the Pareto optimality principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_2000_12_a4/

[1] Emelichev V. A., Kravtsov M. K., Podkopaev D. P., “O kvaziustoichivosti traektornykh zadach vektornoi optimizatsii”, Matem. zametki, 63:1 (1998), 21–27 | MR | Zbl

[2] Emelichev V. A., Podkopaev D. P., “O kolichestvennoi mere ustoichivosti vektornoi zadachi tselochislennogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 38:11 (1998), 1801–1805 | MR | Zbl

[3] Dubov Yu. A., Travkin S. I., Yakimets V. N., Mnogokriterialnye modeli formirovaniya i vybora variantov sistem, Nauka, M., 1986, 295 pp. | MR

[4] Molodtsov D. A., Ustoichivost printsipov optimalnosti, Nauka, M., 1987, 280 pp. | MR | Zbl

[5] Belousov E. G., Andronov V. G., Razreshimost i ustoichivost zadach polinomialnogo programmirovaniya, Izd-vo Mosk. un-ta, M., 1993, 272 pp. | MR | Zbl

[6] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Nauk. dumka, Kiev, 1995, 169 pp. | Zbl

[7] Kozeratskaya L. N., Lebedeva T. T., Sergienko T. I., “Zadachi tselochislennogo programmirovaniya s vektornym kriteriem: parametricheskii analiz i issledovanie ustoichivosti”, DAN SSSR, 307:3 (1989), 527–529

[8] Emelichev V. A., Kravtsov M. K., Podkopaev D. P., “O radiuse kvaziustoichivosti mnogokriterialnoi traektornoi zadachi”, Dokl. AN Belarusi, 40:1 (1996), 9–12 | MR | Zbl

[9] Emelichev V. A., Kravtsov M. K., “Ob ustoichivosti v traektornykh zadachakh vektornoi optimizatsii”, Kibernet. i sistemn. anal., 1995, no. 4, 137–143 | MR | Zbl

[10] Berdysheva R. A., Emelichev V. A., “Nekotorye vidy ustoichivosti kombinatornoi zadachi leksikograficheskoi optimizatsii”, Izv. vuzov. Matematika, 1998, no. 12, 11–21 | MR | Zbl

[11] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discr. Appl. Math., 58 (1995), 169–190 | DOI | MR | Zbl

[12] Emelichev V. A., Berdysheva R. A., “O radiusakh ustoichivosti, kvaziustoichivosti i stabilnosti vektornoi traektornoi zadachi leksikograficheskoi optimizatsii”, Diskretn. matem., 10:1 (1998), 20–27 | MR | Zbl

[13] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Probl. kibernetiki, 35, Nauka, M., 1979, 169–184 | MR