On the solvability of a~multi-index axial assignment problem on one-cycle permutations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 21-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_12_a3,
     author = {E. Kh. Gimadi and N. M. Kairan and A. I. Serdyukov},
     title = {On the solvability of a~multi-index axial assignment problem on one-cycle permutations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--26},
     publisher = {mathdoc},
     number = {12},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_12_a3/}
}
TY  - JOUR
AU  - E. Kh. Gimadi
AU  - N. M. Kairan
AU  - A. I. Serdyukov
TI  - On the solvability of a~multi-index axial assignment problem on one-cycle permutations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 21
EP  - 26
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_12_a3/
LA  - ru
ID  - IVM_2000_12_a3
ER  - 
%0 Journal Article
%A E. Kh. Gimadi
%A N. M. Kairan
%A A. I. Serdyukov
%T On the solvability of a~multi-index axial assignment problem on one-cycle permutations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 21-26
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_12_a3/
%G ru
%F IVM_2000_12_a3
E. Kh. Gimadi; N. M. Kairan; A. I. Serdyukov. On the solvability of a~multi-index axial assignment problem on one-cycle permutations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 21-26. http://geodesic.mathdoc.fr/item/IVM_2000_12_a3/

[1] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981, 342 pp. | MR

[2] Balas E., Saltzman M. J., “Facets of the three-index assignment polytope”, Discrete Appl. Math., 23:3 (1989), 201–229 | DOI | MR | Zbl

[3] Balas E., Saltzman M. J., “An algorithm for the three-index assignment problem”, Oper. Res., 39:1 (1991), 150–161 | DOI | MR | Zbl

[4] Papadimitriu C. H., Yannakakis M., “Optimization, approximation and complexity classes”, J. Comput. System Sciences, 43 (1991), 425–440 | DOI | MR

[5] Sahni S., Gonzales T. P., “$P$-complete approximation problem”, J. Association for Computing Machinery, 23:3 (1976), 555–565 | MR | Zbl

[6] Gimadi E. Kh., Serdyukov A. I., “Aksialnye trekhindeksnye zadachi o naznachenii i kommivoyazhera: bystrye priblizhennye algoritmy i ikh veroyatnostnyi analiz”, Izv. vuzov. Matematika, 1999, no. 12, 19–25 | MR | Zbl