An approximation algorithm for the location problem on a~maximum with bounded quantities of production and facilities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 15-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_12_a2,
     author = {I. P. Voznyuk},
     title = {An approximation algorithm for the location problem on a~maximum with bounded quantities of production and facilities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {12},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_12_a2/}
}
TY  - JOUR
AU  - I. P. Voznyuk
TI  - An approximation algorithm for the location problem on a~maximum with bounded quantities of production and facilities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 15
EP  - 20
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_12_a2/
LA  - ru
ID  - IVM_2000_12_a2
ER  - 
%0 Journal Article
%A I. P. Voznyuk
%T An approximation algorithm for the location problem on a~maximum with bounded quantities of production and facilities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 15-20
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_12_a2/
%G ru
%F IVM_2000_12_a2
I. P. Voznyuk. An approximation algorithm for the location problem on a~maximum with bounded quantities of production and facilities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 15-20. http://geodesic.mathdoc.fr/item/IVM_2000_12_a2/

[1] Voznyuk I. P., “Zadacha razmescheniya na seti s ogranichennymi propusknymi sposobnostyami kommunikatsii”, Diskretn. analiz i issledov. operatsii. Ser. 2, 6:1 (1999), 3–11 | MR | Zbl

[2] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR

[3] Hochbaum D. S., “Heuristics for the fixed cost median problem”, Math. Program., 22:2 (1982), 148–162 | DOI | MR | Zbl

[4] Shmoys D. B., Tardos E., Aardal K., “Approximation algorithms for facility location problems”, Proceedings of the 29th ACM Symposium on Theory of Computing, 1997, 265–274

[5] Guha S., Khuller S., “Greedy strikes back: improved facility location algorithms”, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, 649–657 | MR | Zbl

[6] Chudak F., “Improved approximation algorithms for uncapacitated facility location”, Proceedings of the 6th IPCO Conference, 1998, 180–194 | MR | Zbl

[7] Korupolu M., Plaxton C., Rajaraman R., “Analysis of a local search heuristic for facility location problems”, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, 1–10 | MR | Zbl

[8] Chudak F., Williamson D., “Improved approximation algorithms for capacitated facility location problems”, Proceedings of the 7th IPCO Conference, 1999, 99–113 | MR | Zbl

[9] Cornuejols G., Fisher M. L., Nemhauser G. L., “Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms”, Manag. Sci., 23:8 (1977), 789–810 | DOI | MR | Zbl

[10] Ageev A. A., Sviridenko M. I., “An $0.828$-approximation algorithm for the uncapacitated facility location problem”, Discrete Appl. Math., 93:2–3 (1999), 149–156 | DOI | MR | Zbl

[11] Nemhauser G. L., Wolsey L. A., Fisher M. L., “An analysis of approximations for maximizing submodular set functions, I”, Math. Program., 14:3 (1978), 265–294 | DOI | MR | Zbl

[12] Orlin J. B., “A faster strongly polynomial minimum cost flow algorithm”, Operations research, 41:2 (1993), 338–350 | DOI | MR | Zbl