Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_11_a6, author = {M. R. Timerbaev}, title = {Finite-element approximation in weighted {Sobolev} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--84}, publisher = {mathdoc}, number = {11}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2000_11_a6/} }
M. R. Timerbaev. Finite-element approximation in weighted Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2000), pp. 76-84. http://geodesic.mathdoc.fr/item/IVM_2000_11_a6/
[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[2] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR
[3] Timerbaev M. R., “Otsenki pogreshnosti $n$-mernoi splain-interpolyatsii v vesovykh normakh”, Izv. vuzov. Matematika, 1992, no. 10, 54–60 | MR | Zbl
[4] Clement P., “Approximation by finite element functions using local regularization”, Rev. franc. automat. inform., rech. oper. R., Ser. Rouge Anal. Numer. R-2, 1975, no. 9, 77–84 | MR | Zbl
[5] Kufner A., “Einige Eigenschaften der Sobolewschen Raume mit Belengsfunctionen”, Czechosl. Math. J., 1965, 597–620 | MR | Zbl
[6] Avantaggiati A., “Spazi di Sobolev con peso ed alcune applicazioni”, Boll. U.M.I., 13A:1 (1976), 1–52 | MR
[7] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977, 455 pp. | MR
[8] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR
[9] Fokht A. S., “Vesovye teoremy vlozheniya i otsenki reshenii uravnenii ellipticheskogo tipa, I”, Differents. uravneniya, 18:8 (1982), 1440–1449 | MR | Zbl
[10] Timerbaev M. R., “Teoremy vlozheniya vesovykh prostranstv Soboleva”, Izv. vuzov. Matematika, 1991, no. 9, 56–60 | MR