The best net, the best section, and the Chebyshev center of a bounded set in an infinite-dimensional Lobachevskii space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 42-47
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1999_9_a5,
author = {E. N. Sosov},
title = {The best net, the best section, and the {Chebyshev} center of a~bounded set in an infinite-dimensional {Lobachevskii} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {42--47},
year = {1999},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1999_9_a5/}
}
TY - JOUR AU - E. N. Sosov TI - The best net, the best section, and the Chebyshev center of a bounded set in an infinite-dimensional Lobachevskii space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 42 EP - 47 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_1999_9_a5/ LA - ru ID - IVM_1999_9_a5 ER -
%0 Journal Article %A E. N. Sosov %T The best net, the best section, and the Chebyshev center of a bounded set in an infinite-dimensional Lobachevskii space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1999 %P 42-47 %N 9 %U http://geodesic.mathdoc.fr/item/IVM_1999_9_a5/ %G ru %F IVM_1999_9_a5
E. N. Sosov. The best net, the best section, and the Chebyshev center of a bounded set in an infinite-dimensional Lobachevskii space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 42-47. http://geodesic.mathdoc.fr/item/IVM_1999_9_a5/
[1] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR
[2] Garkavi A. L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl
[3] Belobrov P. K., “K voprosu o chebyshevskom tsentre mnozhestva”, Izv. vuzov. Matematika, 1964, no. 1, 3–9 | MR | Zbl
[4] Belobrov P. K., “O chebyshevskoi tochke sistemy mnozhestv”, Izv. vuzov. Matematika, 1966, no. 6, 18–24 | MR | Zbl
[5] Shirokov P. A., Kratkii ocherk osnov geometrii Lobachevskogo, Nauka, M., 1983, 77 pp. | MR
[6] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR