Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_9_a4, author = {A. K. Rybnikov}, title = {Special connections that determine the zero curvature representation for second-order evolution equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--41}, publisher = {mathdoc}, number = {9}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/} }
TY - JOUR AU - A. K. Rybnikov TI - Special connections that determine the zero curvature representation for second-order evolution equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 32 EP - 41 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/ LA - ru ID - IVM_1999_9_a4 ER -
%0 Journal Article %A A. K. Rybnikov %T Special connections that determine the zero curvature representation for second-order evolution equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1999 %P 32-41 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/ %G ru %F IVM_1999_9_a4
A. K. Rybnikov. Special connections that determine the zero curvature representation for second-order evolution equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 32-41. http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/
[1] Rybnikov A. K., “Differentsialno-geometricheskie struktury, assotsiirovannye s uravneniyami obratnoi zadachi i preobrazovaniyami Beklunda”, Mezhdunarodn. geometrich. shkola-semin. pamyati N. V. Efimova, Tez. dokl. (Abrau-Dyurso, 1996), Rostov-na-Donu, 1996, 24–25
[2] Rybnikov A. K., “Uravneniya obratnoi zadachi, preobrazovaniya Beklunda i teoriya svyaznostei”, Mezhdunarodn. geometrich. semin. “Sovremennaya geometriya i teoriya fizicheskikh polei”, Tez. dokl., Kazan, 1997, 106
[3] Hermann R., “Pseudopotentials of Estabrook and Wahlquist, the geometry of solitons, and the theory of connections”, Phys. Rev. Lett., 36:15 (1976), 835–836 | DOI | MR
[4] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16 (1975), 1–7 | DOI | MR | Zbl
[5] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl
[6] Laptev G. F., “Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. 3-go Vsesoyuzn. matem. s'ezda, T. 3 (1956), 1958, 409–418
[7] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. Geometrich. semin. VINITI, 1, 1966, 139–189 | MR | Zbl
[8] Laptev G. F., “Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya”, Tr. Geometrich. semin. VINITI, 2, 1969, 161–178 | MR | Zbl
[9] Laptev G. F., “Invariantnaya analiticheskaya teoriya differentsiruemykh otobrazhenii”, Tr. Geometrich. semin., 6, VINITI, 1974, 37–42 | MR | Zbl
[10] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. VINITI. Probl. geometrii, 9, 1979, 5–246 | MR | Zbl
[11] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987, 190 pp. | MR
[12] Rybnikov A. K., “O geometrii psevdopotentsialov evolyutsionnykh uravnenii”, Izv. vuzov. Matematika, 1995, no. 5, 55–67 | MR | Zbl
[13] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987, 479 pp. | MR
[14] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR