Special connections that determine the zero curvature representation for second-order evolution equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_9_a4,
     author = {A. K. Rybnikov},
     title = {Special connections that determine the zero curvature representation for second-order evolution equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--41},
     publisher = {mathdoc},
     number = {9},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/}
}
TY  - JOUR
AU  - A. K. Rybnikov
TI  - Special connections that determine the zero curvature representation for second-order evolution equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 32
EP  - 41
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/
LA  - ru
ID  - IVM_1999_9_a4
ER  - 
%0 Journal Article
%A A. K. Rybnikov
%T Special connections that determine the zero curvature representation for second-order evolution equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 32-41
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/
%G ru
%F IVM_1999_9_a4
A. K. Rybnikov. Special connections that determine the zero curvature representation for second-order evolution equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 32-41. http://geodesic.mathdoc.fr/item/IVM_1999_9_a4/

[1] Rybnikov A. K., “Differentsialno-geometricheskie struktury, assotsiirovannye s uravneniyami obratnoi zadachi i preobrazovaniyami Beklunda”, Mezhdunarodn. geometrich. shkola-semin. pamyati N. V. Efimova, Tez. dokl. (Abrau-Dyurso, 1996), Rostov-na-Donu, 1996, 24–25

[2] Rybnikov A. K., “Uravneniya obratnoi zadachi, preobrazovaniya Beklunda i teoriya svyaznostei”, Mezhdunarodn. geometrich. semin. “Sovremennaya geometriya i teoriya fizicheskikh polei”, Tez. dokl., Kazan, 1997, 106

[3] Hermann R., “Pseudopotentials of Estabrook and Wahlquist, the geometry of solitons, and the theory of connections”, Phys. Rev. Lett., 36:15 (1976), 835–836 | DOI | MR

[4] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16 (1975), 1–7 | DOI | MR | Zbl

[5] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[6] Laptev G. F., “Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. 3-go Vsesoyuzn. matem. s'ezda, T. 3 (1956), 1958, 409–418

[7] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. Geometrich. semin. VINITI, 1, 1966, 139–189 | MR | Zbl

[8] Laptev G. F., “Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya”, Tr. Geometrich. semin. VINITI, 2, 1969, 161–178 | MR | Zbl

[9] Laptev G. F., “Invariantnaya analiticheskaya teoriya differentsiruemykh otobrazhenii”, Tr. Geometrich. semin., 6, VINITI, 1974, 37–42 | MR | Zbl

[10] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. VINITI. Probl. geometrii, 9, 1979, 5–246 | MR | Zbl

[11] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987, 190 pp. | MR

[12] Rybnikov A. K., “O geometrii psevdopotentsialov evolyutsionnykh uravnenii”, Izv. vuzov. Matematika, 1995, no. 5, 55–67 | MR | Zbl

[13] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987, 479 pp. | MR

[14] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR