Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_9_a3, author = {A. Ya. Narmanov}, title = {On the geometry of totally geodesic {Riemannian} foliations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--31}, publisher = {mathdoc}, number = {9}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_9_a3/} }
A. Ya. Narmanov. On the geometry of totally geodesic Riemannian foliations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 26-31. http://geodesic.mathdoc.fr/item/IVM_1999_9_a3/
[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR
[2] Reinhart B., “Foliated manifolds with bundle like metrics”, Ann. Math., 69:1 (1959), 119–132 | DOI | MR | Zbl
[3] Tondeur Ph., Foliations on Riemannian manifolds, Springer-Verlag, New York, 1988, 247 pp. | MR
[4] Hermann R., “On the differential geometry of foliations”, Ann. Math. Mech., 72:3 (1960), 445–457 | MR | Zbl
[5] Blumenthal R., Hebda J., “Ehresman connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl
[6] Blumenthal R., Hebda J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math., 35 (1984), 383–392 | DOI | MR | Zbl
[7] Morgan A., “Holonomy and metric properties of foliations in higher codimension”, Proc. Amer. Math. Soc., 58 (1976), 255–261 | DOI | MR | Zbl
[8] Hermann R., “A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle”, Proc. Amer. Math. Soc., 11 (1960), 236–242 | DOI | MR | Zbl
[9] Johnson D., Whitt L., “Totally geodesic foliations on $3$-manifolds”, Proc. Amer. Math. Soc., 76 (1979), 355–357 | DOI | MR | Zbl