Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_9_a2, author = {L. V. Zilbergleit}, title = {Intermediate integrals of the {Monge--Amp\`ere} equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--25}, publisher = {mathdoc}, number = {9}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_9_a2/} }
L. V. Zilbergleit. Intermediate integrals of the Monge--Amp\`ere equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1999), pp. 16-25. http://geodesic.mathdoc.fr/item/IVM_1999_9_a2/
[1] Zilbergleit L. V., “$G$-modelnye resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka”, UMN, 36:1 (1981), 207–208 | MR
[2] Lychagin V. V., “Lokalnaya klassifikatsiya nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, UMN, 30:1 (1975), 101–171 | MR | Zbl
[3] Zilbergleit L. V., “Second order differential equation associated with the contact geometry: symmetries, conservation laws and shock waves”, Acta Appl. Math., 45:1 (1996), 51–70 | DOI | MR
[4] Serre J.-P., Algèbres de Lie semi-simples complexes, Benjamin, New York–Amsterdam, 1966, 80 pp. | MR | Zbl
[5] Lepage Th. N., “Sur certaines congruences de formes alternées”, Bull. Soc. Roy. Sci. Liège, 1946, no. 15, 21–31 | MR | Zbl
[6] Chern S. S., “On a generalization of Kähler geometry. Algebraic Geometry and Topology”, A Symposium in Honor of S. Lefschetz, Princeton Univ. Press, Princeton, N. J., 1957, 103–121 | MR | Zbl
[7] Weil A., Introduction à l'étude des variétés kahlerieness, Hermann, Paris, 1958, 175 pp. | MR | Zbl
[8] Wells R. O., Differential analysis on complex manifolds, Prentice-Hall, New York, 1973, 252 pp. | MR | Zbl
[9] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1 (1979), 137–165 | MR | Zbl
[10] Minkowski H., “Volumen und Oberfläche”, Math. Ann., 57 (1903), 447–495 | DOI | MR | Zbl
[11] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M.–L., 1950, 428 pp. | MR