Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_8_a4, author = {S. G. Myslivets}, title = {On a~multidimensional boundary variant of the {Morera} theorem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--36}, publisher = {mathdoc}, number = {8}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_8_a4/} }
S. G. Myslivets. On a~multidimensional boundary variant of the Morera theorem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1999), pp. 33-36. http://geodesic.mathdoc.fr/item/IVM_1999_8_a4/
[1] Globevnik J., Stout E. L., “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[2] Kytmanov A. M., Myslivets S. G., “On functions with one-dimensional property of holomorphic contiuation and boundary analogues of the Morera theorem”, J. Natur. Geometry, 10:3 (1999), 415–430 | MR
[3] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979, 366 pp.
[4] Kytmanov A. M., Myslivets S. G., “O funktsiyakh, predstavimykh integralom Koshi–Fantappe opredelennogo vida”, Kompleksn. analiz i differents. uravneniya, Izd-vo Krasnoyarsk. un-ta, Krasnoyarsk, 1996, 96–112 | MR
[5] Kytmanov A. M., Myslivets S. G., “O golomorfnosti funktsii, predstavimykh formuloi logarifmicheskogo vycheta”, Sib. matem. zhurn., 38:2 (1997), 351–361 | MR | Zbl
[6] Stout E. L., “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR