Universal version of generalized integral constraints in the class of finitely additive measures.~I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_7_a9,
     author = {A. G. Chentsov},
     title = {Universal version of generalized integral constraints in the class of finitely additive {measures.~I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--74},
     publisher = {mathdoc},
     number = {7},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_7_a9/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Universal version of generalized integral constraints in the class of finitely additive measures.~I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 67
EP  - 74
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_7_a9/
LA  - ru
ID  - IVM_1999_7_a9
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Universal version of generalized integral constraints in the class of finitely additive measures.~I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 67-74
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_7_a9/
%G ru
%F IVM_1999_7_a9
A. G. Chentsov. Universal version of generalized integral constraints in the class of finitely additive measures.~I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 67-74. http://geodesic.mathdoc.fr/item/IVM_1999_7_a9/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974, 488 pp. | MR

[3] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, Nauka, Ekaterinburg, 1993, 232 pp.

[4] Kelli Dzh. L., Obschaya topologiya, 2-e izd., Nauka, M., 1981, 431 pp. | MR

[5] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[6] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[7] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, T. 1, In. lit., M., 1962, 895 pp.

[8] Chentsov A. G., “K voprosu o korrektnom rasshirenii odnoi zadachi o vybore plotnosti veroyatnosti pri ogranicheniyakh na sistemu matematicheskikh ozhidanii”, UMN, 50:5 (1995), 223–242 | MR | Zbl

[9] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Ucheb. posobie, Izd-vo MGU, M., 1988, 252 pp. | Zbl

[10] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Ucheb. posobie, Vyssh. shkola, M., 1979, 336 pp. | Zbl

[11] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[12] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, N.-Y., 1983, 253 pp. | MR | Zbl

[13] Chentsov A. G., “Zadacha o postroenii mnozhestv asimptoticheskoi dostizhimosti i ee regulyarizatsiya”, Izv. vuzov. Matematika, 1995, no. 10, 61–75 | MR | Zbl

[14] Chentsov A. G., “Asimptoticheski dostizhimye elementy i ikh obobschennoe predstavlenie v klasse konechno-additivnykh mer”, Tr. in-ta matem. i mekhan. UrO RAN, 3, Ekaterinburg, 1995, 211–244 | MR | Zbl

[15] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR