A~coefficient estimate for harmonic automorphisms of the circle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 42-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_7_a4,
     author = {M. A. Osiptsev},
     title = {A~coefficient estimate for harmonic automorphisms of the circle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--45},
     publisher = {mathdoc},
     number = {7},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_7_a4/}
}
TY  - JOUR
AU  - M. A. Osiptsev
TI  - A~coefficient estimate for harmonic automorphisms of the circle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 42
EP  - 45
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_7_a4/
LA  - ru
ID  - IVM_1999_7_a4
ER  - 
%0 Journal Article
%A M. A. Osiptsev
%T A~coefficient estimate for harmonic automorphisms of the circle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 42-45
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_7_a4/
%G ru
%F IVM_1999_7_a4
M. A. Osiptsev. A~coefficient estimate for harmonic automorphisms of the circle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 42-45. http://geodesic.mathdoc.fr/item/IVM_1999_7_a4/

[1] Duren P., Schober G., “A variation method for harmonic mappings onto convex regions”, Complex variables theory appl., 9 (1987), 153–168 | MR | Zbl

[2] Duren P., Schober G., “Linear extremal problems for harmonic mappings of the disk”, Proc. Amer. Math. Soc., 106 (1988), 967–973 | DOI | MR

[3] Wegmann R., “Extremal problems for harmonic mappings from the unit disc to convex region”, J. Comput. and Appl. Math., 46 (1993), 165–181 | DOI | MR | Zbl