On some properties of the alternating triangular vector method for the heat equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_7_a0,
     author = {S. B. Zaitseva and A. A. Zlotnik},
     title = {On some properties of the alternating triangular vector method for the heat equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {7},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_7_a0/}
}
TY  - JOUR
AU  - S. B. Zaitseva
AU  - A. A. Zlotnik
TI  - On some properties of the alternating triangular vector method for the heat equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 3
EP  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_7_a0/
LA  - ru
ID  - IVM_1999_7_a0
ER  - 
%0 Journal Article
%A S. B. Zaitseva
%A A. A. Zlotnik
%T On some properties of the alternating triangular vector method for the heat equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 3-11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_7_a0/
%G ru
%F IVM_1999_7_a0
S. B. Zaitseva; A. A. Zlotnik. On some properties of the alternating triangular vector method for the heat equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1999), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_1999_7_a0/

[1] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989, 616 pp. | MR

[2] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988, 264 pp. | MR

[3] Abrashin V. N., “Ob odnom variante metoda peremennykh napravlenii resheniya mnogomernykh zadach matematicheskoi fiziki, I”, Differents. uravneniya, 26:2 (1990), 314–323 | MR

[4] Abrashin V. N., Mukha V. A., “Ob odnom klasse ekonomichnykh raznostnykh skhem resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. uravneniya, 28:10 (1992), 1786–1799 | MR | Zbl

[5] Vabischevich P. N., “Ob odnom klasse vektornykh additivnykh raznostnykh skhem”, Izv. vuzov. Matematika, 1994, no. 9, 11–15

[6] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 36:3 (1996), 44–51 | MR

[7] Jovanovič B. S., “On the convergence of a multicomponent alternating direction difference scheme”, Publ. de l'Institut Math., 56(70), Beograd, 1994, 129–134 | MR | Zbl

[8] Jovanovič B. S., “On a class of multicomponent alternating direction methods”, 3rd Int. Coll. on Numerical Analysis (Plovdiv, 1994), eds. D. Bainov, A. Dishliev, SCTP, Singapore, 1995, 97–106 | Zbl

[9] Jovanovič B. S., “On the convergence of a factorized vector finite difference scheme”, Publ. de l'Institut Math. Nouvelle série, 60(74) (1996), 153–164 | MR | Zbl

[10] Zaitseva S. B., Zlotnik A. A., “Tochnye otsenki pogreshnosti vektornykh metodov rasschepleniya dlya uravneniya teploprovodnosti”, Zhurn. vychisl. matem. i matem. fiz., 39:3 (1999), 47–491 | MR

[11] Samarskii A. A., “Ob odnom ekonomichnom algoritme chislennogo resheniya sistem differentsialnykh i algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 4:3 (1964), 580–585 | MR | Zbl

[12] Samarskii A. A., “O printsipe additivnosti dlya postroeniya ekonomichnykh raznostnykh skhem”, DAN SSSR, 165:6 (1965), 1253–1256 | MR

[13] Zaitseva S. B., Zlotnik A. A., “Error analysis in $L_2(Q)$ for symmetrized locally one-dimensional methods for the heat equation”, Russ. J. Numer. Anal. Math. Modelling, 13:1 (1998), 69–91 | MR | Zbl

[14] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp. | MR

[15] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti metodov peremennykh napravlenii dlya uravneniya teploprovodnosti”, Vestn. Mosk. un-ta. Ser. vychisl. matem. i kibernet., 1983, no. 2, 8–13 | MR | Zbl

[16] Zlotnik A. A., Turetaev I. D., “Tochnye otsenki pogreshnosti nekotorykh dvukhsloinykh metodov resheniya trekhmernogo uravneniya teploprovodnosti”, Matem. sb., 128:4 (1985), 530–544 | MR