Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_6_a4, author = {V. N. Kutrunov and Z. S. Kuryata}, title = {Integral equations of a~vector field}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--36}, publisher = {mathdoc}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_6_a4/} }
V. N. Kutrunov; Z. S. Kuryata. Integral equations of a~vector field. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1999), pp. 33-36. http://geodesic.mathdoc.fr/item/IVM_1999_6_a4/
[1] Kantor I. L., Solodovnikov A. S., Giperkompleksnye chisla, Nauka, M., 1973, 144 pp. | MR
[2] Kravchenko V. V., “Kvaternionnoznachnye integralnye predstavleniya garmonicheskikh elektromagnitnykh i spinornykh polei”, DAN, 341:5 (1995), 603–605 | MR | Zbl
[3] Pimenov A. A., Pushkarev V. I., “Primenenie apparata kvaternionov k obobscheniyu metoda Kolosova–Muskhelishvili na prostranstvennye zadachi teorii uprugosti”, PMM, 55:3 (1991), 422–427 | MR | Zbl
[4] Chelnokov Yu. N., “Kvaterniony i dinamika upravlyaemogo dvizheniya tverdogo tela”, Mekhan. tverdogo tela, 1996, no. 2, 13–26
[5] Banichuk N. V., Sharanyuk A. V., “Primenenie kvaternionov dlya resheniya trekhmernykh zadach optimizatsii raspredeleniya materiala v uprugikh telakh”, Mezhdunarodn. konf. po probl. optimiz. v mekhan. deform. tverd. tela, Tez. dokl., N. Novgorod, 1995, 7–8
[6] Kutrunov V. N., “Kvaternionnyi metod regulyarizatsii integralnykh uravnenii teorii uprugosti”, PMM, 56:5 (1992), 864–868 | MR | Zbl
[7] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978, 832 pp. | MR