Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_6_a3, author = {T. I. Ishankulov and O. I. Makhmudov}, title = {The {Cauchy} problem for a~system of thermoelasticity equations in 3-dimensional space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--32}, publisher = {mathdoc}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/} }
TY - JOUR AU - T. I. Ishankulov AU - O. I. Makhmudov TI - The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 27 EP - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/ LA - ru ID - IVM_1999_6_a3 ER -
%0 Journal Article %A T. I. Ishankulov %A O. I. Makhmudov %T The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1999 %P 27-32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/ %G ru %F IVM_1999_6_a3
T. I. Ishankulov; O. I. Makhmudov. The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1999), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/
[1] Kupradze V. D., Burchuladze T. V., Gegeliya T. G. i dr., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Klassicheskaya i mikropolyarnaya teoriya. Statika, garmonicheskie kolebaniya, dinamika. Osnovy i metody resheniya, 2-e izd., Nauka, M., 1976, 624 pp. | MR
[2] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zhurn., 33:1 (1992), 186–190 | MR
[3] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Matematika, 1994, no. 1, 54–61 | MR | Zbl
[4] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl
[5] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | MR
[6] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR
[7] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[8] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[9] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR
[10] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 112:2 (1957), 195–197 | MR
[11] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966, 696 pp.
[12] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, 3-e izd., Fizmatgiz, M., 1961, 400 pp. | MR
[13] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR
[14] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1 (1965), 131–136 | Zbl
[15] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Dis. ...kand. fiz.-matem. nauk, Novosibirsk, 1990, 80 pp.