The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1999), pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_6_a3,
     author = {T. I. Ishankulov and O. I. Makhmudov},
     title = {The {Cauchy} problem for a~system of thermoelasticity equations in 3-dimensional space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--32},
     publisher = {mathdoc},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/}
}
TY  - JOUR
AU  - T. I. Ishankulov
AU  - O. I. Makhmudov
TI  - The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 27
EP  - 32
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/
LA  - ru
ID  - IVM_1999_6_a3
ER  - 
%0 Journal Article
%A T. I. Ishankulov
%A O. I. Makhmudov
%T The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 27-32
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/
%G ru
%F IVM_1999_6_a3
T. I. Ishankulov; O. I. Makhmudov. The Cauchy problem for a~system of thermoelasticity equations in 3-dimensional space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (1999), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_1999_6_a3/

[1] Kupradze V. D., Burchuladze T. V., Gegeliya T. G. i dr., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Klassicheskaya i mikropolyarnaya teoriya. Statika, garmonicheskie kolebaniya, dinamika. Osnovy i metody resheniya, 2-e izd., Nauka, M., 1976, 624 pp. | MR

[2] Yarmukhamedov Sh. Ya., Ishankulov T. I., Makhmudov O. I., “O zadache Koshi dlya sistemy uravnenii teorii uprugosti v prostranstve”, Sib. matem. zhurn., 33:1 (1992), 186–190 | MR

[3] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii prostranstvennoi teorii uprugosti v peremescheniyakh”, Izv. vuzov. Matematika, 1994, no. 1, 54–61 | MR | Zbl

[4] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl

[5] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | MR

[6] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR

[7] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[8] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[9] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR

[10] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 112:2 (1957), 195–197 | MR

[11] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966, 696 pp.

[12] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, 3-e izd., Fizmatgiz, M., 1961, 400 pp. | MR

[13] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR

[14] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1 (1965), 131–136 | Zbl

[15] Makhmudov O. I., Zadacha Koshi dlya sistemy teorii uprugosti v prostranstve, Dis. ...kand. fiz.-matem. nauk, Novosibirsk, 1990, 80 pp.