Error estimates for the projection method for an abstract quasilinear hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 94-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_5_a9,
     author = {S. E. Zhelezovsky and N. N. Bukesova},
     title = {Error estimates for the projection method for an abstract quasilinear hyperbolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--96},
     publisher = {mathdoc},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_5_a9/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
AU  - N. N. Bukesova
TI  - Error estimates for the projection method for an abstract quasilinear hyperbolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 94
EP  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_5_a9/
LA  - ru
ID  - IVM_1999_5_a9
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%A N. N. Bukesova
%T Error estimates for the projection method for an abstract quasilinear hyperbolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 94-96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_5_a9/
%G ru
%F IVM_1999_5_a9
S. E. Zhelezovsky; N. N. Bukesova. Error estimates for the projection method for an abstract quasilinear hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 94-96. http://geodesic.mathdoc.fr/item/IVM_1999_5_a9/

[1] Zhelezovskii S. E., “Metod Bubnova–Galerkina dlya abstraktnoi kvazilineinoi zadachi o statsionarnom deistvii”, Differents. uravneniya, 31:7 (1995), 1222–1231 | MR

[2] Zhelezovskii S. E., O skorosti skhodimosti metoda Galerkina dlya odnogo klassa kvazilineinykh evolyutsionnykh zadach, Dep. v VINITI 08.01.98, No 24-B98, Red. zhurn. “Sib. matem. zhurn.”, Novosibirsk, 1998, 19 pp.

[3] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl

[4] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR

[5] Lyashko A. D., “O skhodimosti metodov tipa Galerkina”, DAN SSSR, 120:2 (1958), 242–244 | Zbl

[6] Timerbaev M. R., Lyashko A. D., “Ob otsenkakh pogreshnosti skhem metoda konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 30:7 (1994), 1239–1243 | MR | Zbl

[7] Sobolevskii P. E., “Teorema o smeshannykh proizvodnykh i otsenka skorosti skhodimosti metoda Galerkina dlya parabolicheskikh uravnenii”, DAN USSR. Ser. A, 1987, no. 8, 12–16 | MR

[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. uravneniya, 26:12 (1990), 2051–2059 | MR | Zbl

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[10] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966, 432 pp. | MR

[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR