Questions of solvability and a~finite element method for higher-order degenerate elliptic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_5_a5,
     author = {A. D. Lyashko and M. R. Timerbaev},
     title = {Questions of solvability and a~finite element method for higher-order degenerate elliptic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--64},
     publisher = {mathdoc},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_5_a5/}
}
TY  - JOUR
AU  - A. D. Lyashko
AU  - M. R. Timerbaev
TI  - Questions of solvability and a~finite element method for higher-order degenerate elliptic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 57
EP  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_5_a5/
LA  - ru
ID  - IVM_1999_5_a5
ER  - 
%0 Journal Article
%A A. D. Lyashko
%A M. R. Timerbaev
%T Questions of solvability and a~finite element method for higher-order degenerate elliptic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 57-64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_5_a5/
%G ru
%F IVM_1999_5_a5
A. D. Lyashko; M. R. Timerbaev. Questions of solvability and a~finite element method for higher-order degenerate elliptic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 57-64. http://geodesic.mathdoc.fr/item/IVM_1999_5_a5/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183

[2] Mikhlin S. G., “O primenimosti variatsionnogo metoda k nekotorym vyrozhdayuschimsya ellipticheskim uravneniyam”, DAN SSSR, 91:4 (1953), 723–726

[3] Vishik M. I., “Ellipticheskie uravneniya, vyrozhdayuschiesya na granitse oblasti”, UMN, 9:1 (1954), 138–143 | Zbl

[4] Kudryavtsev L. D., “O reshenii variatsionnym metodom ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, DAN SSSR, 108:1 (1956), 16–19 | MR | Zbl

[5] Glushko V. P., “Pervaya kraevaya zadacha dlya uravnenii ellipticheskogo tipa, vyrozhdayuschikhsya na mnogoobraziyakh”, DAN SSSR, 129:3 (1959), 492–495 | Zbl

[6] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[7] Lizorkin P. I., Nikolskii S. M., “Koertsitivnye svoistva ellipticheskogo uravneniya s vyrozhdeniem i obobschennoi pravoi chastyu”, Tr. Matem. in-ta im. V. A. Steklova, 161, 1983, 157–183 | MR | Zbl

[8] Gusman Yu. A., Oganesyan L. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 5:2 (1965), 351–357 | MR | Zbl

[9] Croziex M., Thomas J. M., “Elements finis et problemes elleptiques degeneres”, Rev. franc. automat., inform., rech. operat., 7:R-3 (1973), 77–104 | MR

[10] Lapin A. V., Smirnov Yu. B., “Issledovanie raznostnykh skhem dlya kvazilineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii”, Differents. uravneniya, 12:5 (1976), 892–901 | MR | Zbl

[11] Bendali A., “Approximation of a degenerated elliptic boundary value problem by a finite element method”, RAIRO. Anal. Numer., 15:2 (1981), 87–99 | MR | Zbl

[12] Moing P., “Resolution par une methode d'elements finis du probleme de Dirichlet pour un operateur elliptique degenere”, Compt. Rend. Acad. Sci. Paris, 292:3 (1981), 217–220 | MR | Zbl

[13] Katrakhov V. V., Katrakhova A. A., “Metod konechnykh elementov dlya nekotorykh vyrozhdayuschikhsya ellipticheskikh kraevykh zadach”, DAN SSSR, 279:4 (1984), 799–802 | MR | Zbl

[14] Hatri M., “Estimation d'erreur optimale par la methode des elements finis pour un probleme aux limites degenere”, Compt. Rend. Acad. Sci. Paris, 37:5 (1984), 573–576 | MR | Zbl

[15] Lyashko A. D., Timerbaev M. R., “Otsenki tochnosti skhem metoda konechnykh elementov dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 1993, no. 7, 1210–1215 | MR | Zbl

[16] Timerbaev M. R., Lyashko A. D., “Ob otsenkakh pogreshnosti skhem metoda konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya uravnenii $2$-go poryadka”, Differents. uravneniya, 30:7 (1994), 1239–1243 | MR | Zbl

[17] Timerbaev M. R., “Konechnoelementnaya approksimatsiya vyrozhdayuschegosya ellipticheskogo uravneniya $2$-go poryadka v oblasti s krivolineinoi granitsei”, Izv. vuzov. Matematika, 1994, no. 9, 78–86 | MR | Zbl

[18] Karchevskii M. M., Lyashko A. D., Timerbaev M. R., “Metod konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya uravnenii chetvertogo poryadka”, Differents. uravneniya, 1999, no. 2, 232–237 | MR

[19] Timerbaev M. R., “Teoremy vlozheniya vesovykh prostranstv Soboleva”, Izv. vuzov. Matematika, 1991, no. 9, 56–60 | MR

[20] Timerbaev M. R., “Otsenki pogreshnosti $n$-mernoi splain-interpolyatsii v vesovykh normakh”, Izv. vuzov. Matematika, 1992, no. 10, 54–60 | MR | Zbl

[21] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR