Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_5_a3, author = {I. V. Konnov}, title = {Realizable feasible quasi-nonexpansive operators}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--36}, publisher = {mathdoc}, number = {5}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_5_a3/} }
I. V. Konnov. Realizable feasible quasi-nonexpansive operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 32-36. http://geodesic.mathdoc.fr/item/IVM_1999_5_a3/
[1] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 261 pp. | MR
[2] Konnov I. V., “A class of combined iterative methods for solving variational inequalities”, J. Optimization Theory and Appl., 94:3 (1997), 677–693 | DOI | MR | Zbl
[3] Zoitendeik G., Metody vozmozhnykh napravlenii, In. lit., M., 1963, 176 pp.
[4] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986, 288 pp. | MR
[5] Kulikov A. N., Fazylov V. R., “Konechnyi metod resheniya sistem vypuklykh neravenstv”, Izv. vuzov. Matematika, 1984, no. 11, 59–63 | MR | Zbl
[6] Kulikov A. N., Fazylov V. R., “Konechnyi metod linearizatsii dlya sistem vypuklykh neravenstv”, Kibernetika, 1987, no. 4, 36–40 | MR | Zbl
[7] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974, 376 pp. | MR | Zbl
[8] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975, 320 pp. | MR
[9] Sea Zh., Optimizatsiya.Teoriya i algoritmy, Mir, M., 1973, 244 pp.
[10] Kiwiel K. C., Methods of descent for nondifferentiable optimization, Springer-Verlag, Berlin, 1985, 362 pp. | MR | Zbl