Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_4_a3, author = {R. V. Vershinin}, title = {On $(1+\varepsilon_n)$-bounded $M$-bases}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {24--27}, publisher = {mathdoc}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_4_a3/} }
R. V. Vershinin. On $(1+\varepsilon_n)$-bounded $M$-bases. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1999), pp. 24-27. http://geodesic.mathdoc.fr/item/IVM_1999_4_a3/
[1] Singer I., Bases in Banach spaces, II, Springer-Verlag, Berlin–Heidelberg–New York, 1981, 880 pp. | MR | Zbl
[2] Davis W. J., Johnson W. B., “On the existence of fundamental and total bounded biorthogonal systems in Banach spaces”, Studia math., 45:2 (1973), 173–179 | MR | Zbl
[3] Ovsepian R. I., Pelczynski A., “The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in $L^2$”, Studia math., 54:2 (1975), 149–159 | MR | Zbl
[4] Pelczynski A., “All separable Banach spaces admit for every $\varepsilon>0$ fundamental total and bounded by $1+\varepsilon$ biorthogonal sequences”, Studia math., 55:3 (1976), 295–304 | MR | Zbl
[5] Plichko A. N., “Suschestvovanie polnoi $\varepsilon$-ortonormalnoi sistemy v separabelnom normirovannom prostranstve”, DAN USSR, 1976, no. 1, 22–23
[6] Dvoretsky A., “Some results on convex bodies and Banach spaces”, Proc. Internat. Sympos. Linear Spaces, Jerusalem, 1961, 123–160 | MR
[7] Milman V. D., “Geometricheskaya teoriya prostranstv Banakha. Ch. 1: Teoriya bazisnykh i minimalnykh sistem”, UMN, 25:3 (1970), 113–174 | MR