Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_4_a14, author = {Yu. N. Smolin}, title = {On a~method for obtaining an exponential estimate for the solution of the {Volterra} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {79--82}, publisher = {mathdoc}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_4_a14/} }
TY - JOUR AU - Yu. N. Smolin TI - On a~method for obtaining an exponential estimate for the solution of the Volterra equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 79 EP - 82 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_4_a14/ LA - ru ID - IVM_1999_4_a14 ER -
Yu. N. Smolin. On a~method for obtaining an exponential estimate for the solution of the Volterra equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1999), pp. 79-82. http://geodesic.mathdoc.fr/item/IVM_1999_4_a14/
[1] Vinokurov V. R., “Approksimatsiya kvazilineinykh integralnykh uravnenii Volterra algebraicheskimi uravneniyami”, Izv. vuzov. Matematika, 1963, no. 6, 39–48 | MR
[2] Vinokurov V. R., Smolin Yu. N., “Ob asimptotike uravnenii Volterra s pochti-periodicheskimi yadrami i zapazdyvaniyami”, DAN SSSR, 201:4 (1971), 1704–1707 | Zbl
[3] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968, 448 pp. | MR
[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR | Zbl
[5] Rakhmatullina L. F., Lineinye funktsionalno-differentsialnye uravneniya, Dis. ...dokt. fiz.-matem. nauk, Kiev, 1982, 280 pp.
[6] Komlenko Yu. V., “Neobkhodimoe i dostatochnoe uslovie spravedlivosti teoremy ob integralnykh neravenstvakh v prostranstve summiruemykh funktsii”, Tr. Izhevsk. matem. semin., 1975, no. 3, 73–86
[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 2-e izd., Nauka, M., 1977, 741 pp. | MR | Zbl
[8] Salekhov D. V., “Primer vpolne nepreryvnogo integralnogo operatora, deistvuyuschego iz $\mathcal{L}_p$ v $\mathcal{L}_p$ s polozhitelnym yadrom, ne prinadlezhaschim $\mathcal{L}_r$ $(r>1)$”, UMN, 18:4 (1963), 179–182 | MR | Zbl