Radial transformations of sets, and inequalities for the transfinite diameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1999), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_4_a0,
     author = {E. G. Akhmedzyanova and V. N. Dubinin},
     title = {Radial transformations of sets, and inequalities for the transfinite diameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/}
}
TY  - JOUR
AU  - E. G. Akhmedzyanova
AU  - V. N. Dubinin
TI  - Radial transformations of sets, and inequalities for the transfinite diameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 3
EP  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/
LA  - ru
ID  - IVM_1999_4_a0
ER  - 
%0 Journal Article
%A E. G. Akhmedzyanova
%A V. N. Dubinin
%T Radial transformations of sets, and inequalities for the transfinite diameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 3-8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/
%G ru
%F IVM_1999_4_a0
E. G. Akhmedzyanova; V. N. Dubinin. Radial transformations of sets, and inequalities for the transfinite diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1999), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[2] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR | Zbl

[3] Ransford T., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995, 232 pp. | MR | Zbl

[4] Overholt M., Schober G., “Transfinite extent”, Ann. Acad. Sci. Fenn. Ser. A1, 14 (1989), 277–290 | MR | Zbl

[5] Amoroso F., “$f$-transfinite diameter and number theoretic applications”, Ann. Inst. Fourier, 43:4 (1993), 1179–1198 | MR | Zbl

[6] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[7] Szego G., “On a certain kind of symmetrization and its applications”, Ann. mat. pura ed appl., 40 (1955), 113–119 | DOI | MR | Zbl

[8] Marcus M., “Transformations of domains in the plane and applications in the theory of functions”, Pacif. J. Math., 14:2 (1964), 613–626 | MR | Zbl

[9] Marcus M., “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Anal. Math., 27 (1974), 47–78 | DOI | MR | Zbl

[10] Klein M., “Estimates for the transfinite diameter with applications to conformal mapping”, Pacif. J. Math., 22:2 (1967), 267–279 | MR | Zbl

[11] Aharonov D., Kirwan W. E., “A method of symmetrization and applications, II”, Trans. Amer. Math. Soc., 169:7 (1972), 279–291 | DOI | MR | Zbl

[12] Zedek M., “The linear measures of $n$-podes in conformal maps of the unit disk”, J. London Math. Soc., 6:2 (1973), 301–306 | DOI | MR | Zbl

[13] Hayman W. K., “Some applications of the transfinite diameter to the theory of functions”, J. Anal. Math., 1 (1951), 155–179 | DOI | MR | Zbl

[14] Marcus M., “Some geometric properties of the image of the unit disk by conformal maps”, J. London Math. Soc., 13:1 (1976), 177–182 | DOI | MR | Zbl