Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_4_a0, author = {E. G. Akhmedzyanova and V. N. Dubinin}, title = {Radial transformations of sets, and inequalities for the transfinite diameter}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--8}, publisher = {mathdoc}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/} }
TY - JOUR AU - E. G. Akhmedzyanova AU - V. N. Dubinin TI - Radial transformations of sets, and inequalities for the transfinite diameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 3 EP - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/ LA - ru ID - IVM_1999_4_a0 ER -
E. G. Akhmedzyanova; V. N. Dubinin. Radial transformations of sets, and inequalities for the transfinite diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (1999), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_1999_4_a0/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[2] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 515 pp. | MR | Zbl
[3] Ransford T., Potential theory in the complex plane, Cambridge Univ. Press, Cambridge, 1995, 232 pp. | MR | Zbl
[4] Overholt M., Schober G., “Transfinite extent”, Ann. Acad. Sci. Fenn. Ser. A1, 14 (1989), 277–290 | MR | Zbl
[5] Amoroso F., “$f$-transfinite diameter and number theoretic applications”, Ann. Inst. Fourier, 43:4 (1993), 1179–1198 | MR | Zbl
[6] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl
[7] Szego G., “On a certain kind of symmetrization and its applications”, Ann. mat. pura ed appl., 40 (1955), 113–119 | DOI | MR | Zbl
[8] Marcus M., “Transformations of domains in the plane and applications in the theory of functions”, Pacif. J. Math., 14:2 (1964), 613–626 | MR | Zbl
[9] Marcus M., “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Anal. Math., 27 (1974), 47–78 | DOI | MR | Zbl
[10] Klein M., “Estimates for the transfinite diameter with applications to conformal mapping”, Pacif. J. Math., 22:2 (1967), 267–279 | MR | Zbl
[11] Aharonov D., Kirwan W. E., “A method of symmetrization and applications, II”, Trans. Amer. Math. Soc., 169:7 (1972), 279–291 | DOI | MR | Zbl
[12] Zedek M., “The linear measures of $n$-podes in conformal maps of the unit disk”, J. London Math. Soc., 6:2 (1973), 301–306 | DOI | MR | Zbl
[13] Hayman W. K., “Some applications of the transfinite diameter to the theory of functions”, J. Anal. Math., 1 (1951), 155–179 | DOI | MR | Zbl
[14] Marcus M., “Some geometric properties of the image of the unit disk by conformal maps”, J. London Math. Soc., 13:1 (1976), 177–182 | DOI | MR | Zbl