On a two-point problem for a second-order partial differential equation with constant coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1999), pp. 80-84
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1999_3_a9,
author = {A. B. Mikhailov},
title = {On a~two-point problem for a~second-order partial differential equation with constant coefficients},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {80--84},
year = {1999},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1999_3_a9/}
}
TY - JOUR AU - A. B. Mikhailov TI - On a two-point problem for a second-order partial differential equation with constant coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 80 EP - 84 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_1999_3_a9/ LA - ru ID - IVM_1999_3_a9 ER -
A. B. Mikhailov. On a two-point problem for a second-order partial differential equation with constant coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1999), pp. 80-84. http://geodesic.mathdoc.fr/item/IVM_1999_3_a9/
[1] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR
[2] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR. Ser matem., 42:2 (1978), 325–355 | MR
[3] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl
[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.
[5] Korobeinik Yu. F., “Uravneniya svertki v kompleksnoi oblasti”, Matem. sb., 127:2 (1985), 173–197 | MR