Investigation of the stability of solutions of differential equations that admit a transitive symmetry group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1999), pp. 57-63
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1999_3_a6,
author = {I. V. Shirokov},
title = {Investigation of the stability of solutions of differential equations that admit a~transitive symmetry group},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {57--63},
year = {1999},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1999_3_a6/}
}
TY - JOUR AU - I. V. Shirokov TI - Investigation of the stability of solutions of differential equations that admit a transitive symmetry group JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 57 EP - 63 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_1999_3_a6/ LA - ru ID - IVM_1999_3_a6 ER -
I. V. Shirokov. Investigation of the stability of solutions of differential equations that admit a transitive symmetry group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1999), pp. 57-63. http://geodesic.mathdoc.fr/item/IVM_1999_3_a6/
[1] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl
[2] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 534 pp. | MR
[3] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 300 pp. | MR
[4] Bylov B. F., Vinogradov R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966, 576 pp. | MR | Zbl
[5] Shuster G., Determinirovannyi khaos, Mir, M., 1988, 240 pp. | MR | Zbl
[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 2-e izd., Nauka, M., 1979, 431 pp. | MR