Investigation of the convergence of a~difference scheme for three-dimensional equations of the dynamics of a~viscous fluid
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1999), pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_1_a9,
     author = {E. M. Fedotov},
     title = {Investigation of the convergence of a~difference scheme for three-dimensional equations of the dynamics of a~viscous fluid},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--75},
     publisher = {mathdoc},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_1_a9/}
}
TY  - JOUR
AU  - E. M. Fedotov
TI  - Investigation of the convergence of a~difference scheme for three-dimensional equations of the dynamics of a~viscous fluid
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 69
EP  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_1_a9/
LA  - ru
ID  - IVM_1999_1_a9
ER  - 
%0 Journal Article
%A E. M. Fedotov
%T Investigation of the convergence of a~difference scheme for three-dimensional equations of the dynamics of a~viscous fluid
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 69-75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_1_a9/
%G ru
%F IVM_1999_1_a9
E. M. Fedotov. Investigation of the convergence of a~difference scheme for three-dimensional equations of the dynamics of a~viscous fluid. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1999), pp. 69-75. http://geodesic.mathdoc.fr/item/IVM_1999_1_a9/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp. | MR | Zbl

[2] Samarskii A. A., “Klassy ustoichivykh skhem”, Zhurn. vychisl. matem. i matem. fiz., 7:5 (1967), 1096–1133 | MR

[3] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | Zbl

[4] Gulin A. V., “Teoremy ob ustoichivosti nesamosopryazhennykh raznostnykh skhem”, Matem. sb., 110:2 (1979), 297–303 | MR | Zbl

[5] Ardelyan N. V., “Razreshimost i skhodimost nelineinykh raznostnykh skhem”, DAN SSSR, 302:6 (1988), 1289–1292 | MR

[6] Lyashko A. D., Karchevskii M. M., “Issledovanie odnogo klassa nelineinykh raznostnykh skhem”, Izv. vuzov. Matematika, 1970, no. 7, 63–71 | Zbl

[7] Lyashko A. D., “O korrektnosti nelineinykh dvukhsloinykh operatorno-raznostnykh skhem”, DAN SSSR, 215:2 (1974), 263–265 | Zbl

[8] Lapin A. V., Lyashko A. D., “O skhodimosti raznostnykh skhem dlya kvazilineinykh uravnenii parabolicheskikh na reshenii”, Izv. vuzov. Matematika, 1975, no. 12, 30–42 | MR | Zbl

[9] Lyashko A. D., Fedotov E. M., “Korrektnost odnogo klassa konservativnykh nelineinykh operatorno-raznostnykh skhem”, Izv. vuzov. Matematika, 1985, no. 10, 47–55 | MR | Zbl

[10] Fedotov E. M., Raznostnye skhemy dlya nelineinykh nestatsionarnykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1990, 90 pp.

[11] Fedotov E. M., “Ob odnom klasse dvukhsloinykh raznostnykh skhem dlya nelineinykh giperbolicheskikh uravnenii”, Issledov. po prikladnoi matem., no. 17, Kazan, 1990, 129–146

[12] Fedotov E. M., “Ob odnom klasse dvukhsloinykh raznostnykh skhem dlya nelineinykh kraevykh zadach s pamyatyu”, Izv. vuzov. Matematika, 1997, no. 4, 86–97 | MR | Zbl

[13] Abrashin V. N., “O raznostnykh skhemakh gazovoi dinamiki”, Differents. uravneniya, 17:4 (1981), 710–718 | MR | Zbl

[14] Abrashin V. N., Matus P. P., “O tochnosti raznostnykh skhem dlya odnomernykh zadach gazovoi dinamiki”, Differents. uravneniya, 17:7 (1981), 1155–1161 | MR

[15] Smagulov Sh., “O skhodyaschikhsya raznostnykh skhemakh dlya uravnenii vyazkogo gaza v peremennykh Eilera”, DAN SSSR, 277:3 (1984), 553–556 | MR | Zbl

[16] Amosov A. A., Zlotnik A. A., “O raznostnykh skhemakh dlya nekotorykh zadach ob odnomernom dvizhenii vyazkogo gaza”, Num. Anal. and Math. mod., Banach Center Publ. Warsaw, 24, 1990, 415–434 | MR | Zbl

[17] Popov A. V., “Issledovanie ekonomichnogo konechno-raznostnogo metoda dlya dvumernykh uravnenii vyazkogo teploprovodnogo gaza”, Zhurn. vychisl. matem. i matem. fiz., 31:7 (1991), 1066–1080 | MR | Zbl