Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_1_a1, author = {N. G. Gur'yanov}, title = {Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {6--9}, publisher = {mathdoc}, number = {1}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/} }
TY - JOUR AU - N. G. Gur'yanov TI - Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 6 EP - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/ LA - ru ID - IVM_1999_1_a1 ER -
%0 Journal Article %A N. G. Gur'yanov %T Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1999 %P 6-9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/ %G ru %F IVM_1999_1_a1
N. G. Gur'yanov. Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1999), pp. 6-9. http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/
[1] Guryanov N. G., “Pologii ortotropnyi sfericheskii segment pod deistviem osesimmetrichnoi lokalnoi nagruzki”, Tr. XVII Mezhdunarodn. konf. po teorii obolochek i plastin, T. 3, Saratov, 1997, 65–70
[2] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974, 446 pp. | MR
[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, T. 2, 2-e izd., Nauka, M., 1974, 295 pp. | MR