Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1999), pp. 6-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_1_a1,
     author = {N. G. Gur'yanov},
     title = {Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {6--9},
     publisher = {mathdoc},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/}
}
TY  - JOUR
AU  - N. G. Gur'yanov
TI  - Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 6
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/
LA  - ru
ID  - IVM_1999_1_a1
ER  - 
%0 Journal Article
%A N. G. Gur'yanov
%T Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 6-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/
%G ru
%F IVM_1999_1_a1
N. G. Gur'yanov. Analytic solution of a~system of differential equations describing the axisymmetric deformation of an orthotropic hollow spherical segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (1999), pp. 6-9. http://geodesic.mathdoc.fr/item/IVM_1999_1_a1/

[1] Guryanov N. G., “Pologii ortotropnyi sfericheskii segment pod deistviem osesimmetrichnoi lokalnoi nagruzki”, Tr. XVII Mezhdunarodn. konf. po teorii obolochek i plastin, T. 3, Saratov, 1997, 65–70

[2] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974, 446 pp. | MR

[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, T. 2, 2-e izd., Nauka, M., 1974, 295 pp. | MR