Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_12_a6, author = {I. V. Konnov}, title = {On a~class of $D$-interval functions for mixed variational inequalities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--64}, publisher = {mathdoc}, number = {12}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_12_a6/} }
I. V. Konnov. On a~class of $D$-interval functions for mixed variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1999), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_1999_12_a6/
[1] Browder F. E., “On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces”, Proc. Nat. Acad. Sci. USA, 56:2 (1966), 419–425 | DOI | MR | Zbl
[2] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988, 448 pp. | MR
[3] Auchmuty F. E., “Variational principles for variational inequalities”, Numer. Funct. Anal. and Optim., 10:9–10 (1989), 863–874 | DOI | MR | Zbl
[4] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Programming, 53:1 (1992), 99–110 | DOI | MR | Zbl
[5] Peng J.-M., “Equivalence of variational inequality problems to unconstrained minimization”, Math. Programming, 78:3 (1997), 347–355 | DOI | MR | Zbl
[6] Yamashita N., Taji K., Fukushima M., “Unconstrained optimization formulations of variational inequality problems”, J. Optim. Theory and Appl., 92:3 (1997), 439–456 | DOI | MR | Zbl
[7] Patriksson M., “Merit functions and descent algorithms for a class of variational inequality problems”, Optimization, 41:1 (1997), 37–55 | DOI | MR | Zbl
[8] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR