Axial three-index assignment and traveling salesman problems: fast approximate algorithms and their probabilistic analysis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1999), pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_12_a1,
     author = {E. Kh. Gimadi and A. I. Serdyukov},
     title = {Axial three-index assignment and traveling salesman problems: fast approximate algorithms and their probabilistic analysis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--25},
     publisher = {mathdoc},
     number = {12},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_12_a1/}
}
TY  - JOUR
AU  - E. Kh. Gimadi
AU  - A. I. Serdyukov
TI  - Axial three-index assignment and traveling salesman problems: fast approximate algorithms and their probabilistic analysis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 19
EP  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_12_a1/
LA  - ru
ID  - IVM_1999_12_a1
ER  - 
%0 Journal Article
%A E. Kh. Gimadi
%A A. I. Serdyukov
%T Axial three-index assignment and traveling salesman problems: fast approximate algorithms and their probabilistic analysis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 19-25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_12_a1/
%G ru
%F IVM_1999_12_a1
E. Kh. Gimadi; A. I. Serdyukov. Axial three-index assignment and traveling salesman problems: fast approximate algorithms and their probabilistic analysis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1999), pp. 19-25. http://geodesic.mathdoc.fr/item/IVM_1999_12_a1/

[1] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981, 342 pp. | MR

[2] Balas E., Saltzman M. J., “Facets of the three-index assignment polytope”, Discrete Appl. Math., 23:3 (1989), 201–229 | DOI | MR | Zbl

[3] Balas E., Saltzman M. J., “An algorithm for the three-index assignment problem”, Oper. Res., 39:1 (1991), 150–161 | DOI | MR | Zbl

[4] Garey M. R., Johnson D. S., Computers and intractability, W. H. Freeman and Company, San Francisco, 1979 | MR | Zbl

[5] Papadimitriu C. H., Yannakakis M., “Optimization, approximation, and complexity classes”, J. Comput. System Sci., 43 (1991), 425–440 | DOI | MR

[6] Sahni S., Gonzales T. P., “$P$-complete approximation problem”, J. Association for Computing Machinery, 23:3 (1976), 555–565 | MR | Zbl

[7] Gimadi E. Kh., “O nekotorykh matematicheskikh modelyakh i metodakh planirovaniya krupnomasshtabnykh proektov”, Tr. in-ta matem. Sib. otd., 10, Novosibirsk, 1988, 89–115 | MR | Zbl

[8] Gimadi E. Kh., Glebov N. I., Perepelitsa V. A., “Algoritmy s otsenkami dlya zadach diskretnoi optimizatsii”, Probl. kibernetiki, no. 31, Nauka, M., 1975, 35–42 | MR

[9] Gimadi E. Kh., Glebov N. I., Serdyukov A. I., “Algoritm dlya priblizhennogo resheniya zadachi kommivoyazhera i ego veroyatnostnyi analiz”, Sib. zhurn. issledov. operatsii, 1994, no. 2, 8–17 | MR | Zbl

[10] Perepelitsa V. A., Gimadi E. Kh., “K zadache nakhozhdeniya minimalnogo gamiltonova kontura na grafe so vzveshennymi dugami”, Diskretn. analiz, no. 15, Novosibirsk, 1969, 57–65

[11] Angluin D., Valiant L. G., “Fast probabilistic algorithms for Hamiltonian circuits and matchings”, J. Comput. System Sci., 18 (1979), 155–193 | DOI | MR | Zbl

[12] Posa L., “Hamiltonian circuits in random graphs”, Discrete Math., 14 (1976), 359–364 | DOI | MR | Zbl

[13] Slominski L., “Probabilistic analysis of combinatorial algorithms: a bibliography with selected annotations”, Computing, 28 (1982), 257–267 | DOI | MR | Zbl

[14] Lawler E. L., Lenstra J. K., Rinnoy Kan A. H. G., Shmoys D. B. (eds.), The traveling salesman problem. A guided tour of combinatorial optimization, Wiley, Chichester, 1985 | MR | Zbl

[15] Dinits E. A., Kronrod M. A., “Odin algoritm resheniya zadachi o naznachenii”, DAN SSSR, 189:1 (1969), 23–25