Equivalence and invariants of second-order linear partial differential equations in two variables under a~change of variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1999), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_11_a0,
     author = {U. D. Bekbaev},
     title = {Equivalence and invariants of second-order linear partial differential equations in two variables under a~change of variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {11},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_11_a0/}
}
TY  - JOUR
AU  - U. D. Bekbaev
TI  - Equivalence and invariants of second-order linear partial differential equations in two variables under a~change of variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 3
EP  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_11_a0/
LA  - ru
ID  - IVM_1999_11_a0
ER  - 
%0 Journal Article
%A U. D. Bekbaev
%T Equivalence and invariants of second-order linear partial differential equations in two variables under a~change of variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 3-10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_11_a0/
%G ru
%F IVM_1999_11_a0
U. D. Bekbaev. Equivalence and invariants of second-order linear partial differential equations in two variables under a~change of variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (1999), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_1999_11_a0/

[1] Wilczynski E. J., Projective differentail geometry of curves and ruled surfaces, B. G. Teubner, Leipzig, 1906 | Zbl

[2] Berkovich L. M., “Zadacha Alfana ob ekvivalentnosti obyknovennykh lineinykh differentsialnykh uravnenii”, UMN, 41:1 (1986), 183–184 | MR

[3] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, 3-e izd., Fizmatgiz, M., 1961, 400 pp. | MR

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[5] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[6] Udalov A. S., “K teorii krivykh v proektivnom prostranstve izmerenii”, DAN SSSR, 146:1 (1962), 46–49 | MR | Zbl

[7] Tsirulik V. G., Brusentsev F. A., “Ob ekvivalentnosti svoistv kommutativnoi faktorizuemosti i privodimosti lineinykh differentsialnykh operatorov”, Izv. vuzov. Matematika, 1976, no. 8, 81–84 | Zbl

[8] Korolev G. M., “Invarianty lineinogo differentsialnogo uravneniya i ego privodimost”, Differents. i integr. uravneniya, Gorkii, 1981, 38–41 | MR

[9] Newman F., “A survey of global properties of linear differential equations of the $n$-th order”, Lect. Notes. Math., 964, 1982, 548–563 | MR

[10] Bekbaev U. D., “Ob ekvivalentnosti i invariantakh obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 30:5 (1994), 911–912 | Zbl

[11] Bekbaev U. D., “Esche raz ob ekvivalentnosti i invariantakh differentsialnykh uravnenii vida $y^{(n)}+a_{n-1}y^{(n-1)}+\dots+a_0y=0$”, Uzb. matem. zhurn., 1995, no. 3, 19–31 | MR

[12] Mikhalev A. V., Pankratev E. V., “Differentsialnaya i raznostnaya algebra”, Itogi nauki i tekhn. VINITI. Algebra. Topologiya. Geometriya, 25, 1987, 67–139 | MR | Zbl

[13] Kolchin E. R., Differential algebra and algebraic groups, Academic Press, N. Y.–London, 1973, 446 pp. | MR | Zbl