Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1999_10_a1, author = {A. V. Lapin and E. G. Sheshukov}, title = {The problem of filtration through a~porous barrier on a~permeable foundation with a~layer of salt water}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {9--18}, publisher = {mathdoc}, number = {10}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1999_10_a1/} }
TY - JOUR AU - A. V. Lapin AU - E. G. Sheshukov TI - The problem of filtration through a~porous barrier on a~permeable foundation with a~layer of salt water JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1999 SP - 9 EP - 18 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1999_10_a1/ LA - ru ID - IVM_1999_10_a1 ER -
%0 Journal Article %A A. V. Lapin %A E. G. Sheshukov %T The problem of filtration through a~porous barrier on a~permeable foundation with a~layer of salt water %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1999 %P 9-18 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1999_10_a1/ %G ru %F IVM_1999_10_a1
A. V. Lapin; E. G. Sheshukov. The problem of filtration through a~porous barrier on a~permeable foundation with a~layer of salt water. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (1999), pp. 9-18. http://geodesic.mathdoc.fr/item/IVM_1999_10_a1/
[1] Baiocchi C., “Su un problema a frontiera libera conesso a questioni di idraulica”, Ann. mat. pura ed appl., 92 (1972), 107–127 | DOI | MR | Zbl
[2] Baiocchi C., Comincioli V., Magenes E., Pozzi G. A., “Free boundary problems in the theory of fluid flow through porous media: existence and uniqueness theorems”, Ann. mat. pura ed appl., 97:4 (1973), 1–82 | DOI | MR | Zbl
[3] Baiocchi C., Comincioli V., Guerry L., Volpi G., “Free boundary problems in the theory of fluid flow through porous media: a numerical approach”, Calcolo, 10:1 (1973), 1–86 | DOI | MR
[4] Bruch J. C., “A survey of free boundary value problems in the theory of fluid flow through porous media: variational inequality approach, Part 1”, Adv. Water Resourc., 3 (1980), 65–80 | DOI
[5] Bruch J. C., “A survey of free boundary value problems in the theory of fluid flow through porous media: variational inequality approach, Part 2”, Adv. Water Resourc., 3 (1980), 115–124 | DOI
[6] Bruch J. C., “Three-dimensional free and moving boundary seepage problems solved using an integral transformation in a fixed domain method”, Proc. of Conf. Solving Ground Water Problems with Models, V. 1 (Feb. 10–12, 1987, Denver, Colo), 575–588
[7] Alt H. W., “Strömungen durch in homogene poröse Medien mit freiem Rand”, J. reine und angew. Math., 305 (1979), 89–115 | MR | Zbl
[8] Brezis H., Kinderlehrer D., Stampacchia G., “Sur une nouvelle formulation du problème de l'écoulement à traverse une digue”, Compt. Rend. Acad. Sci. Paris, 287 (1978), 711–714 | MR | Zbl
[9] Carillo-Menendes J., Chipot M., “Sur l'unicité de la solution du problème de l'écoulement à travers une digue”, Compt. Rend. Acad. Sci. Paris, 292 (1981), 191–194 | MR
[10] Alt H. W., Gilardi G., “The behavior of the free boundary for the dam problem”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 9 (1981), 571–626 | MR
[11] Fridman A., Variatsionnye printsipy i zadachi so svobodnoi granitsei, Nauka, M., 1990, 536 pp. | MR
[12] Friedman A., Huang Sh., Young J., “Bang-bang optimal control for the dam problem”, Appl. Math. Optim., 15:1 (1987), 65–85 | DOI | MR
[13] Alt H. W., Cafarelli L. A., Friedman A., “The dam problem with two fluids”, Commun. Pure Appl. Math., 37:5 (1984), 601–645 | DOI | MR | Zbl
[14] Alt H. W., “Numerical solution of steady-state porous flow free boundary problems”, Numer. Math., 36:1 (1980), 73–98 | DOI | MR | Zbl
[15] Pietra P., “An up-wind finite element method for a filtration problem”, RAIRO, Anal. Numer., 16:4 (1982), 463–481 | MR | Zbl
[16] Marini L. D., Pietra P., “Fixed-point algorithms for stationary flow in porous media”, Comput. Math. Appl. Mech. Engr., 56 (1986), 17–45 | DOI | MR | Zbl
[17] Bolrath C., Two multi-level algorithms for the dam problem, Preprint No 45, Math. Institut Ruhr, Bochum, 1985
[18] Lapin A. V., “Metody relaksatsii dlya nekotorykh klassov variatsionnykh neravenstv v $R^n$”, Chislen. analiz i matem. modelirovanie, M., 1989, 127–143 | Zbl
[19] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971, 287 pp. | MR
[20] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Intern. Publ., 1976 | MR | Zbl
[21] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR