On minimal submanifolds of constant curvature in Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 64-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_9_a9,
     author = {L. A. Masal'tsev},
     title = {On minimal submanifolds of constant curvature in {Euclidean} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--65},
     publisher = {mathdoc},
     number = {9},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - On minimal submanifolds of constant curvature in Euclidean space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 64
EP  - 65
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/
LA  - ru
ID  - IVM_1998_9_a9
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T On minimal submanifolds of constant curvature in Euclidean space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 64-65
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/
%G ru
%F IVM_1998_9_a9
L. A. Masal'tsev. On minimal submanifolds of constant curvature in Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 64-65. http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/

[1] Bryant R., “Minimal surfaces of constant curvature in $S^n$”, Trans. Amer. Math. Soc., 290:1 (1985), 259–271 | DOI | MR | Zbl

[2] Cartan E., “Sur les variétes de courbure constante d'un espace euclidien et noneuclidien”, Bull. Soc. math. France, 48 (1920), 132–208 | MR | Zbl

[3] Moore J. D., “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–166 | MR | Zbl

[4] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Matem. sb., 111:3 (1980), 402–433 | MR | Zbl

[5] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v evklidovy prostranstva s ploskoi normalnoi svyaznostyu”, Matem. sb., 137:3 (1988), 275–299 | MR | Zbl