Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_9_a9, author = {L. A. Masal'tsev}, title = {On minimal submanifolds of constant curvature in {Euclidean} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {64--65}, publisher = {mathdoc}, number = {9}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/} }
L. A. Masal'tsev. On minimal submanifolds of constant curvature in Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 64-65. http://geodesic.mathdoc.fr/item/IVM_1998_9_a9/
[1] Bryant R., “Minimal surfaces of constant curvature in $S^n$”, Trans. Amer. Math. Soc., 290:1 (1985), 259–271 | DOI | MR | Zbl
[2] Cartan E., “Sur les variétes de courbure constante d'un espace euclidien et noneuclidien”, Bull. Soc. math. France, 48 (1920), 132–208 | MR | Zbl
[3] Moore J. D., “Isometric immersions of space forms in space forms”, Pacific J. Math., 40:1 (1972), 157–166 | MR | Zbl
[4] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Matem. sb., 111:3 (1980), 402–433 | MR | Zbl
[5] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v evklidovy prostranstva s ploskoi normalnoi svyaznostyu”, Matem. sb., 137:3 (1988), 275–299 | MR | Zbl