Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_9_a8, author = {V. I. Lebedev and A. A. Medovikov}, title = {An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--63}, publisher = {mathdoc}, number = {9}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/} }
TY - JOUR AU - V. I. Lebedev AU - A. A. Medovikov TI - An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 55 EP - 63 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/ LA - ru ID - IVM_1998_9_a8 ER -
%0 Journal Article %A V. I. Lebedev %A A. A. Medovikov %T An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 55-63 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/ %G ru %F IVM_1998_9_a8
V. I. Lebedev; A. A. Medovikov. An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 55-63. http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/
[1] Lebedev V. I., Yavnye raznostnye skhemy s peremennymi shagami po vremeni dlya resheniya zhestkikh sistem uravnenii, Preprint No 177, Otd. vychisl. matem. AN SSSR, 1987, 38 pp. | MR | Zbl
[2] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, 1991, no. 8, 45–80
[3] Lebedev V. I., “Zolotarev polynomials and extremum problems”, Russ. J. Numer. Anal. Math. Modelling, 9:3 (1994), 231–263 | MR | Zbl
[4] Lokutsievskii V. O., Lokutsievskii O. V., Primenenie chebyshevskikh parametrov dlya chislennogo resheniya nekotorykh evolyutsionnykh zadach, Preprint No 98, In-t prikl. matem. AN SSSR, 1984, 30 pp. | MR
[5] Medovikov A. A., Yavnye i yavno-neyavnye metody resheniya zhestkikh nestatsionarnykh zadach, Diss. ...kand. fiz.-matem. nauk, Moskva, 1992, 129 pp.
[6] Van der Houwen P. J., “Explicit Runge-Kutta Formulas with increased stability boundaries”, Numer. Math., 20 (1972), 149–164 | DOI | MR | Zbl
[7] Lebedev V. I., “A new method for determinating the roots of polynomials of least deviation on a segment with weight and subject to additional conditions, Part 1”, Russ. J. Numer. Anal. Math. Modelling, 8:3 (1993), 195–222 | MR | Zbl
[8] Dekker K., Verver J. G., Stability of Runge-Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam–New York–Oxford, 1984, 307 pp. | MR | Zbl
[9] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations. I. Nonstiff problems, Springer, Berlin e.o., 1987, 480 pp. | MR
[10] Hairer E., Wanner G., Solving ordinary differential equations. II. Stiff and differential-algebraic problems, Springer, Berlin e.o., 1991 ; second revised edition, 1996, 614 pp. | MR | Zbl