An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_9_a8,
     author = {V. I. Lebedev and A. A. Medovikov},
     title = {An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--63},
     publisher = {mathdoc},
     number = {9},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/}
}
TY  - JOUR
AU  - V. I. Lebedev
AU  - A. A. Medovikov
TI  - An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 55
EP  - 63
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/
LA  - ru
ID  - IVM_1998_9_a8
ER  - 
%0 Journal Article
%A V. I. Lebedev
%A A. A. Medovikov
%T An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 55-63
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/
%G ru
%F IVM_1998_9_a8
V. I. Lebedev; A. A. Medovikov. An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 55-63. http://geodesic.mathdoc.fr/item/IVM_1998_9_a8/

[1] Lebedev V. I., Yavnye raznostnye skhemy s peremennymi shagami po vremeni dlya resheniya zhestkikh sistem uravnenii, Preprint No 177, Otd. vychisl. matem. AN SSSR, 1987, 38 pp. | MR | Zbl

[2] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, 1991, no. 8, 45–80

[3] Lebedev V. I., “Zolotarev polynomials and extremum problems”, Russ. J. Numer. Anal. Math. Modelling, 9:3 (1994), 231–263 | MR | Zbl

[4] Lokutsievskii V. O., Lokutsievskii O. V., Primenenie chebyshevskikh parametrov dlya chislennogo resheniya nekotorykh evolyutsionnykh zadach, Preprint No 98, In-t prikl. matem. AN SSSR, 1984, 30 pp. | MR

[5] Medovikov A. A., Yavnye i yavno-neyavnye metody resheniya zhestkikh nestatsionarnykh zadach, Diss. ...kand. fiz.-matem. nauk, Moskva, 1992, 129 pp.

[6] Van der Houwen P. J., “Explicit Runge-Kutta Formulas with increased stability boundaries”, Numer. Math., 20 (1972), 149–164 | DOI | MR | Zbl

[7] Lebedev V. I., “A new method for determinating the roots of polynomials of least deviation on a segment with weight and subject to additional conditions, Part 1”, Russ. J. Numer. Anal. Math. Modelling, 8:3 (1993), 195–222 | MR | Zbl

[8] Dekker K., Verver J. G., Stability of Runge-Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam–New York–Oxford, 1984, 307 pp. | MR | Zbl

[9] Hairer E., Norsett S. P., Wanner G., Solving ordinary differential equations. I. Nonstiff problems, Springer, Berlin e.o., 1987, 480 pp. | MR

[10] Hairer E., Wanner G., Solving ordinary differential equations. II. Stiff and differential-algebraic problems, Springer, Berlin e.o., 1991 ; second revised edition, 1996, 614 pp. | MR | Zbl