Construction of parametrized solutions of linear operator equations, based on a~modified Galerkin method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 21-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_9_a2,
     author = {Yu. G. Bulychev},
     title = {Construction of parametrized solutions of linear operator equations, based on a~modified {Galerkin} method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--29},
     publisher = {mathdoc},
     number = {9},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a2/}
}
TY  - JOUR
AU  - Yu. G. Bulychev
TI  - Construction of parametrized solutions of linear operator equations, based on a~modified Galerkin method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 21
EP  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_9_a2/
LA  - ru
ID  - IVM_1998_9_a2
ER  - 
%0 Journal Article
%A Yu. G. Bulychev
%T Construction of parametrized solutions of linear operator equations, based on a~modified Galerkin method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 21-29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_9_a2/
%G ru
%F IVM_1998_9_a2
Yu. G. Bulychev. Construction of parametrized solutions of linear operator equations, based on a~modified Galerkin method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 21-29. http://geodesic.mathdoc.fr/item/IVM_1998_9_a2/

[1] Bulychev Yu. G., “Metod opornykh integralnykh krivykh resheniya zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 28:10 (1988), 1482–1490 | MR

[2] Bulychev Yu. G., “Metody chislenno-analiticheskogo integrirovaniya differentsialnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 31:9 (1991), 1305–1319 | MR

[3] Bulychev Yu. G., “Chislenno-analiticheskoe integrirovanie differentsialnykh uravnenii s ispolzovaniem obobschennoi interpolyatsii”, Zhurn. vychisl. matem. i matem. fiz., 34:4 (1994), 520–532 | MR | Zbl

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984, 752 pp. | MR | Zbl

[5] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 455 pp. | MR

[6] Vainikko G. M., “Vozmuschennyi metod Galerkina i obschaya teoriya priblizhennykh metodov dlya nelineinykh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 7:4 (1967), 723–751 | MR

[7] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, 2-e izd., pererab. i dop., Nauka, M., 1970, 512 pp. | MR | Zbl

[8] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1. 3-e izd., pererab. i dop., Nauka, M., 1966, 632 pp.

[9] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. | MR

[10] Ivanov V. V., Metody vychislenii na EVM, Sprav. posobie, Nauk. dumka, Kiev, 1986, 582 pp. | MR