Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_9_a11, author = {I. G. Teregulov and S. N. Timergaliev}, title = {On the solvability of a~physically nonlinear problem in the theory of shallow shells under finite displacements}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {70--80}, publisher = {mathdoc}, number = {9}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a11/} }
TY - JOUR AU - I. G. Teregulov AU - S. N. Timergaliev TI - On the solvability of a~physically nonlinear problem in the theory of shallow shells under finite displacements JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 70 EP - 80 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_9_a11/ LA - ru ID - IVM_1998_9_a11 ER -
%0 Journal Article %A I. G. Teregulov %A S. N. Timergaliev %T On the solvability of a~physically nonlinear problem in the theory of shallow shells under finite displacements %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 70-80 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_9_a11/ %G ru %F IVM_1998_9_a11
I. G. Teregulov; S. N. Timergaliev. On the solvability of a~physically nonlinear problem in the theory of shallow shells under finite displacements. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 70-80. http://geodesic.mathdoc.fr/item/IVM_1998_9_a11/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 373 pp. | MR
[2] Timergaliev S. N., “Dokazatelstvo razreshimosti odnoi zadachi nelineinoi teorii pologikh obolochek”, Izv. vuzov. Matematika, 1996, no. 9, 60–70 | MR | Zbl
[3] Vekua I. N., Obobschennye analiticheskie funktsii, 2-e izd., Nauka, M., 1988, 509 pp. | MR | Zbl
[4] Teregulov I. G., “Opredelyayuschie sootnosheniya dlya fizicheski nelineinykh anizotropnykh i kompozitnykh obolochek pri konechnykh deformatsiyakh, I”, Izv. vuzov. Matematika, 1985, no. 5, 33–41 | MR | Zbl
[5] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR