On the class of three-webs of $W(4,4,2)$ type with constant components of the fundamental tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 66-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_9_a10,
     author = {Nguen Zoan Tuan},
     title = {On the class of three-webs of $W(4,4,2)$ type with constant components of the fundamental tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--69},
     publisher = {mathdoc},
     number = {9},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_9_a10/}
}
TY  - JOUR
AU  - Nguen Zoan Tuan
TI  - On the class of three-webs of $W(4,4,2)$ type with constant components of the fundamental tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 66
EP  - 69
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_9_a10/
LA  - ru
ID  - IVM_1998_9_a10
ER  - 
%0 Journal Article
%A Nguen Zoan Tuan
%T On the class of three-webs of $W(4,4,2)$ type with constant components of the fundamental tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 66-69
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_9_a10/
%G ru
%F IVM_1998_9_a10
Nguen Zoan Tuan. On the class of three-webs of $W(4,4,2)$ type with constant components of the fundamental tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (1998), pp. 66-69. http://geodesic.mathdoc.fr/item/IVM_1998_9_a10/

[1] Akivis M. A., Golberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, Tr. Geometrich. semin. VINITI AN SSSR, 4, 1973, 179–204 | MR | Zbl

[2] Apresyan Yu. A., “O mnogomernykh tri-tkanyakh, obrazovannykh dvumya semeistvami giperpoverkhnostei i odnim semeistvom krivykh”, Izv. vuzov. Matematika, 1977, no. 4, 132–135 | Zbl

[3] Nguen Zoan Tuan, “O mnogomernykh tri-tkanyakh tipa $W(P, P, Q)$”, Geometriya pogruzhen. mnogoobrazii, MGPI, M., 1986, 101–112 | MR

[4] Nguen Zoan Tuan, “Nekotorye podklassy tri-tkani tipa $W(P, P, Q)$ s postoyannymi komponentami osnovnogo tenzora”, Tkani i kvazigruppy, Kalinin, 1987, 82–87 | MR | Zbl

[5] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962, 210 pp. | MR