The completeness problem in the class of polynomials is decidable
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 56-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_8_a7,
     author = {V. D. Solov'ev},
     title = {The completeness problem in the class of polynomials is decidable},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--59},
     publisher = {mathdoc},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/}
}
TY  - JOUR
AU  - V. D. Solov'ev
TI  - The completeness problem in the class of polynomials is decidable
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 56
EP  - 59
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/
LA  - ru
ID  - IVM_1998_8_a7
ER  - 
%0 Journal Article
%A V. D. Solov'ev
%T The completeness problem in the class of polynomials is decidable
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 56-59
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/
%G ru
%F IVM_1998_8_a7
V. D. Solov'ev. The completeness problem in the class of polynomials is decidable. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 56-59. http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/

[1] Ershov A. P., Lyapunov A. A., “O formalizatsii ponyatiya programmy”, Kibernetika, 1967, no. 5, 40–57 | Zbl

[2] Ershov A. P., “Operatornye algoritmy, I”, Problemy kibernetiki, no. 3, Fizmatgiz, M., 1962, 5–48

[3] Zaslavskii I. D., “Graf-skhemy s pamyatyu”, Tr. Matem. in-ta AN SSSR, 72, 1964, 99–192 | MR | Zbl

[4] Kotov V. E., Sabelfeld V. K., Teoriya skhem programm, Nauka, M., 1991, 247 pp. | MR

[5] Solovev V. D., “Algebraicheskie aspekty abstraktnoi teorii vychislimosti”, Matem. vopr. kibernetiki, no. 3, Nauka, M., 1991, 233–256