The completeness problem in the class of polynomials is decidable
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 56-59
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1998_8_a7,
author = {V. D. Solov'ev},
title = {The completeness problem in the class of polynomials is decidable},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {56--59},
year = {1998},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/}
}
V. D. Solov'ev. The completeness problem in the class of polynomials is decidable. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 56-59. http://geodesic.mathdoc.fr/item/IVM_1998_8_a7/
[1] Ershov A. P., Lyapunov A. A., “O formalizatsii ponyatiya programmy”, Kibernetika, 1967, no. 5, 40–57 | Zbl
[2] Ershov A. P., “Operatornye algoritmy, I”, Problemy kibernetiki, no. 3, Fizmatgiz, M., 1962, 5–48
[3] Zaslavskii I. D., “Graf-skhemy s pamyatyu”, Tr. Matem. in-ta AN SSSR, 72, 1964, 99–192 | MR | Zbl
[4] Kotov V. E., Sabelfeld V. K., Teoriya skhem programm, Nauka, M., 1991, 247 pp. | MR
[5] Solovev V. D., “Algebraicheskie aspekty abstraktnoi teorii vychislimosti”, Matem. vopr. kibernetiki, no. 3, Nauka, M., 1991, 233–256