Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_8_a6,
     author = {G. Sh. Skvortsova and O. E. Tikhonov},
     title = {Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--55},
     publisher = {mathdoc},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/}
}
TY  - JOUR
AU  - G. Sh. Skvortsova
AU  - O. E. Tikhonov
TI  - Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 48
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/
LA  - ru
ID  - IVM_1998_8_a6
ER  - 
%0 Journal Article
%A G. Sh. Skvortsova
%A O. E. Tikhonov
%T Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 48-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/
%G ru
%F IVM_1998_8_a6
G. Sh. Skvortsova; O. E. Tikhonov. Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55. http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/

[1] Bukhvalov A. V., Lozanovskii G. Ya., “O zamknutykh po mere mnozhestvakh v prostranstvakh izmerimykh funktsii”, DAN SSSR, 212:6 (1973), 1273–1275 | MR | Zbl

[2] Bukhvalov A. V., Lozanovskii G. Ya., “O zamknutykh po mere mnozhestvakh v prostranstvakh izmerimykh funktsii”, Tr. Mosk. matem. o-va, 34, 1977, 129–150 | MR | Zbl

[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 3-e izd., pererab., Nauka, M., 1984, 752 pp. | MR | Zbl

[4] Bukhvalov A. V., “Optimization without compactness and its applications”, Operator Theory: Advances and Applications, 75, 1995, 95–112 | MR

[5] Tikhonov O. E., “Zamknutye po mere vypuklye mnozhestva v nekommutativnykh $L^1$-prostranstvakh”, XXVI Voronezhskaya zimnyaya matem. shkola, Sb. nauch. tr., Izd-vo VGU, Voronezh, 1994, 90

[6] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[7] Dodds P. G., Dodds Th. K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl

[8] Muratov M. A., “Skhodimosti v koltse izmerimykh operatorov”, Sb. nauchn. trudov Tashkentsk. un-ta, 573, 1978, 51–58 | MR

[9] Padmanabhan A. R., “Convergence in measure and related results in finite rings of operators”, Trans. Amer. Math. Soc., 128:3 (1967), 359–378 | DOI | MR

[10] Danford N., Shvarts Dzh. T., Lineinye operatory. Ch. 1. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[11] Takesaki M., Theory of Operator Algebras, V. I, Springer-Verlag, 1979, 415 pp. | MR

[12] Takesaki M., “On the conjugate space of operator algebra”, Tôhoku Math. J., 10:2 (1958), 194–203 | DOI | MR | Zbl