Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_8_a6,
     author = {G. Sh. Skvortsova and O. E. Tikhonov},
     title = {Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--55},
     publisher = {mathdoc},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/}
}
TY  - JOUR
AU  - G. Sh. Skvortsova
AU  - O. E. Tikhonov
TI  - Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 48
EP  - 55
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/
LA  - ru
ID  - IVM_1998_8_a6
ER  - 
%0 Journal Article
%A G. Sh. Skvortsova
%A O. E. Tikhonov
%T Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 48-55
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/
%G ru
%F IVM_1998_8_a6
G. Sh. Skvortsova; O. E. Tikhonov. Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55. http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/