Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_8_a6,
author = {G. Sh. Skvortsova and O. E. Tikhonov},
title = {Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--55},
publisher = {mathdoc},
number = {8},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/}
}
TY - JOUR AU - G. Sh. Skvortsova AU - O. E. Tikhonov TI - Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 48 EP - 55 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/ LA - ru ID - IVM_1998_8_a6 ER -
%0 Journal Article %A G. Sh. Skvortsova %A O. E. Tikhonov %T Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 48-55 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/ %G ru %F IVM_1998_8_a6
G. Sh. Skvortsova; O. E. Tikhonov. Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55. http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/