Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_8_a6, author = {G. Sh. Skvortsova and O. E. Tikhonov}, title = {Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {48--55}, publisher = {mathdoc}, number = {8}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/} }
TY - JOUR AU - G. Sh. Skvortsova AU - O. E. Tikhonov TI - Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 48 EP - 55 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/ LA - ru ID - IVM_1998_8_a6 ER -
%0 Journal Article %A G. Sh. Skvortsova %A O. E. Tikhonov %T Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 48-55 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/ %G ru %F IVM_1998_8_a6
G. Sh. Skvortsova; O. E. Tikhonov. Convex sets in noncommutative $L_1$-spaces that are closed in the topology of local convergence in measure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 48-55. http://geodesic.mathdoc.fr/item/IVM_1998_8_a6/
[1] Bukhvalov A. V., Lozanovskii G. Ya., “O zamknutykh po mere mnozhestvakh v prostranstvakh izmerimykh funktsii”, DAN SSSR, 212:6 (1973), 1273–1275 | MR | Zbl
[2] Bukhvalov A. V., Lozanovskii G. Ya., “O zamknutykh po mere mnozhestvakh v prostranstvakh izmerimykh funktsii”, Tr. Mosk. matem. o-va, 34, 1977, 129–150 | MR | Zbl
[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 3-e izd., pererab., Nauka, M., 1984, 752 pp. | MR | Zbl
[4] Bukhvalov A. V., “Optimization without compactness and its applications”, Operator Theory: Advances and Applications, 75, 1995, 95–112 | MR
[5] Tikhonov O. E., “Zamknutye po mere vypuklye mnozhestva v nekommutativnykh $L^1$-prostranstvakh”, XXVI Voronezhskaya zimnyaya matem. shkola, Sb. nauch. tr., Izd-vo VGU, Voronezh, 1994, 90
[6] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl
[7] Dodds P. G., Dodds Th. K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl
[8] Muratov M. A., “Skhodimosti v koltse izmerimykh operatorov”, Sb. nauchn. trudov Tashkentsk. un-ta, 573, 1978, 51–58 | MR
[9] Padmanabhan A. R., “Convergence in measure and related results in finite rings of operators”, Trans. Amer. Math. Soc., 128:3 (1967), 359–378 | DOI | MR
[10] Danford N., Shvarts Dzh. T., Lineinye operatory. Ch. 1. Obschaya teoriya, In. lit., M., 1962, 895 pp.
[11] Takesaki M., Theory of Operator Algebras, V. I, Springer-Verlag, 1979, 415 pp. | MR
[12] Takesaki M., “On the conjugate space of operator algebra”, Tôhoku Math. J., 10:2 (1958), 194–203 | DOI | MR | Zbl