A~variational method and optimal control in the solution of the Mocanu problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_8_a4,
     author = {G. N. Kamyshova},
     title = {A~variational method and optimal control in the solution of the {Mocanu} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--42},
     publisher = {mathdoc},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/}
}
TY  - JOUR
AU  - G. N. Kamyshova
TI  - A~variational method and optimal control in the solution of the Mocanu problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 35
EP  - 42
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/
LA  - ru
ID  - IVM_1998_8_a4
ER  - 
%0 Journal Article
%A G. N. Kamyshova
%T A~variational method and optimal control in the solution of the Mocanu problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 35-42
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/
%G ru
%F IVM_1998_8_a4
G. N. Kamyshova. A~variational method and optimal control in the solution of the Mocanu problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 35-42. http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/

[1] Mocanu P., Reade M., Zlotkiewicz E., “On the functional $[f(z_1)/f'(z_2)]$ for typically-real functions”, Math. Rev. anal. numer. et teor. approxim., 2:2 (1974), 209–214 | MR

[2] Vasilev A. Yu., Kamyshova G. N., “Moduli polosoobraznykh oblastei v reshenii izoperimetricheskoi zadachi konformnogo otobrazheniya”, Sib. matem. zhurn., 37:1 (1996), 60–69 | MR

[3] Aleksandrov I. A., Popov V. I., “Optimalnye upravleniya i odnolistnye funktsii”, Ann. Univ. M. Curie-Sklodowska, Ser. A, 22–24 (1968–1970), 13–20 | MR

[4] Prokhorov D. V., “Mnozhestva znachenii sistem funktsionalov v klassakh odnolistnykh funktsii”, Matem. sb., 181:12 (1990), 1659–1677 | MR

[5] Prokhorov D. V., Reachable set methods in extremal problems for univalent functions, Saratov Univ., Saratov, 1993, 228 pp. | MR | Zbl

[6] Vasilev A. Yu., “Variatsionnye metody i izoperimetricheskie teoremy pokrytiya dlya odnolistnykh funktsii”, Izv. vuzov. Matematika, 1988, no. 1, 14–18

[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR

[8] Milin I. M., Odnolistnye funktsii i ortonormalnye sistemy, Nauka, M., 1971, 256 pp. | MR | Zbl

[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl