Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_8_a4, author = {G. N. Kamyshova}, title = {A~variational method and optimal control in the solution of the {Mocanu} problem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {35--42}, publisher = {mathdoc}, number = {8}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/} }
G. N. Kamyshova. A~variational method and optimal control in the solution of the Mocanu problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (1998), pp. 35-42. http://geodesic.mathdoc.fr/item/IVM_1998_8_a4/
[1] Mocanu P., Reade M., Zlotkiewicz E., “On the functional $[f(z_1)/f'(z_2)]$ for typically-real functions”, Math. Rev. anal. numer. et teor. approxim., 2:2 (1974), 209–214 | MR
[2] Vasilev A. Yu., Kamyshova G. N., “Moduli polosoobraznykh oblastei v reshenii izoperimetricheskoi zadachi konformnogo otobrazheniya”, Sib. matem. zhurn., 37:1 (1996), 60–69 | MR
[3] Aleksandrov I. A., Popov V. I., “Optimalnye upravleniya i odnolistnye funktsii”, Ann. Univ. M. Curie-Sklodowska, Ser. A, 22–24 (1968–1970), 13–20 | MR
[4] Prokhorov D. V., “Mnozhestva znachenii sistem funktsionalov v klassakh odnolistnykh funktsii”, Matem. sb., 181:12 (1990), 1659–1677 | MR
[5] Prokhorov D. V., Reachable set methods in extremal problems for univalent functions, Saratov Univ., Saratov, 1993, 228 pp. | MR | Zbl
[6] Vasilev A. Yu., “Variatsionnye metody i izoperimetricheskie teoremy pokrytiya dlya odnolistnykh funktsii”, Izv. vuzov. Matematika, 1988, no. 1, 14–18
[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966, 628 pp. | MR
[8] Milin I. M., Odnolistnye funktsii i ortonormalnye sistemy, Nauka, M., 1971, 256 pp. | MR | Zbl
[9] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl