Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_7_a9, author = {A. V. Chakmazyan}, title = {On hyperstrips in {Peterson} correspondence in an affine space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {70--76}, publisher = {mathdoc}, number = {7}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a9/} }
A. V. Chakmazyan. On hyperstrips in Peterson correspondence in an affine space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 70-76. http://geodesic.mathdoc.fr/item/IVM_1998_7_a9/
[1] Peterson K. M., “Ob otnosheniyakh i srodstvakh mezhdu krivymi poverkhnostyami”, Matem. sb., 1 (1866), 391–438
[2] Finikov S. P., Izgibanie na glavnom osnovanii i svyazannye s nim geometricheskie zadachi, M.–L., 1937, 176 pp.
[3] Shulikovskii V. I., Klassicheskaya differentsialnaya geometriya v tenzornom izlozhenii, M., 1963, 540 pp. | MR
[4] Ryzhkov V. V., “Sopryazhennye sistemy na mnogomernykh poverkhnostyakh”, Tr. Mosk. matem. o-va, 7, 1958, 179–226 | Zbl
[5] Cheshkova M. A., “O giperpoverkhnostyakh, nakhodyaschikhsya v sootvetstvii Petersona”, Izv. vuzov. Matematika, 1993, no. 10, 69–72 | MR | Zbl
[6] Akivis M. A., “K affinnoi teorii sootvetstviya Petersona mezhdu giperpoverkhnostyami”, Izv. vuzov. Matematika, 1994, no. 4, 3–9 | MR | Zbl
[7] Vagner V. V., “Teoriya polya lokalnykh giperpolos”, Tr. semin. po vektor. i tenzorn. analizu, 1959, no. 8, 197–272
[8] Popov Yu. I., Obschaya teoriya regulyarnykh giperpolos, Ucheb. posobie, Izd-vo Kaliningrad. un-ta, Kaliningrad, 1983, S. 82 | MR | Zbl
[9] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl
[10] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR