On the solvability of a geometrically nonlinear problem in the theory of shallow shells
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 53-61
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1998_7_a7,
author = {I. G. Teregulov and S. N. Timergaliev},
title = {On the solvability of a~geometrically nonlinear problem in the theory of shallow shells},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {53--61},
year = {1998},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a7/}
}
TY - JOUR AU - I. G. Teregulov AU - S. N. Timergaliev TI - On the solvability of a geometrically nonlinear problem in the theory of shallow shells JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 53 EP - 61 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_1998_7_a7/ LA - ru ID - IVM_1998_7_a7 ER -
I. G. Teregulov; S. N. Timergaliev. On the solvability of a geometrically nonlinear problem in the theory of shallow shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 53-61. http://geodesic.mathdoc.fr/item/IVM_1998_7_a7/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 373 pp. | MR
[2] Timergaliev S. N., “Dokazatelstvo razreshimosti odnoi zadachi nelineinoi teorii pologikh obolochek”, Izv. vuzov. Matematika, 1996, no. 9, 60–70 | MR | Zbl
[3] Vekua I. N., Obobschennye analiticheskie funktsii, 2-e izd., Nauka, M., 1988, 509 pp. | MR | Zbl