On the spectrum of a class of Schrödinger operators with a finite number of generalized functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 26-31
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_1998_7_a3,
author = {R. I. Kadiev},
title = {On the spectrum of a~class of {Schr\"odinger} operators with a~finite number of generalized functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {26--31},
year = {1998},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a3/}
}
R. I. Kadiev. On the spectrum of a class of Schrödinger operators with a finite number of generalized functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 26-31. http://geodesic.mathdoc.fr/item/IVM_1998_7_a3/
[1] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 566 pp. | MR
[2] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969, 526 pp. | MR
[3] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980, 536 pp. | MR
[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl
[5] Knyazev P. N., “Ob ispolzovanii svoistv minimaksa v teorii vozmuschenii”, Izv. vuzov. Matematika, 1959, no. 2, 94–100 | Zbl