$d$-r.\,e. degrees that are isolated from above.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1998_7_a2,
     author = {A. A. Efremov},
     title = {$d$-r.\,e. degrees that are isolated from {above.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--25},
     publisher = {mathdoc},
     number = {7},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a2/}
}
TY  - JOUR
AU  - A. A. Efremov
TI  - $d$-r.\,e. degrees that are isolated from above.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1998
SP  - 18
EP  - 25
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1998_7_a2/
LA  - ru
ID  - IVM_1998_7_a2
ER  - 
%0 Journal Article
%A A. A. Efremov
%T $d$-r.\,e. degrees that are isolated from above.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1998
%P 18-25
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1998_7_a2/
%G ru
%F IVM_1998_7_a2
A. A. Efremov. $d$-r.\,e. degrees that are isolated from above.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 18-25. http://geodesic.mathdoc.fr/item/IVM_1998_7_a2/

[1] Efremov A. A., “Izolirovannye sverkhu $d$-$p$.$n$. stepeni, I”, Izv. vuzov. Matematika, 1998, no. 2, 20–28 | MR | Zbl

[2] Cooper S. B., Yi X., Isolated d.r.e. degrees, preprint, University of Leeds, 1995 | MR | Zbl

[3] Soare R. I., Recursively enumerable sets and degrees: a study of computable functions and computably generated sets, Springer-Verlag, Berlin, 1987, 437 pp. | MR