Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_7_a10, author = {Yu. M. Vazhenin and Yu. V. Nagrebetskaya}, title = {On critical theories of groups and monoids in integer-valued matrices}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {77--79}, publisher = {mathdoc}, number = {7}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_7_a10/} }
TY - JOUR AU - Yu. M. Vazhenin AU - Yu. V. Nagrebetskaya TI - On critical theories of groups and monoids in integer-valued matrices JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 77 EP - 79 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_7_a10/ LA - ru ID - IVM_1998_7_a10 ER -
Yu. M. Vazhenin; Yu. V. Nagrebetskaya. On critical theories of groups and monoids in integer-valued matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (1998), pp. 77-79. http://geodesic.mathdoc.fr/item/IVM_1998_7_a10/
[1] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Nekotor. probl. matem. i mekhan., Novosibirsk, 1961, 110–132
[2] Slobodskoi A. M., “Universalnaya teoriya gruppy $GL_3(\mathbb{Z})$”, Algoritmichesk. vopr. algebraichesk. sistem i EVM, Irkutsk, 1979, 200–217
[3] Durnev V. G., “Nerazreshimost nekotorykh teorii grupp $SL(n, \mathbb{Z})$ i $GL(n, \mathbb{Z})$ $(n\geqslant3)$”, Vopr. teorii grupp i gomologicheskoi algebry, Yaroslavl, 1994, 61–68
[4] Vazhenin Yu. M., “Kriticheskie teorii”, Sib. matem. zhurn., 29:1 (1988), 23–31 | MR
[5] Vazhenin Yu. M., Popov V. Yu., “Kriticheskie teorii svobodnykh nilpotentnykh kolets nekotorykh tipov”, Izv. vuzov. Matematika, 1991, no. 3, 74–76 | MR | Zbl
[6] Vazhenin Yu. M., Mnozhestva, logika, algoritmy, Ucheb. posobie, UrGU, Ekaterinburg, 1995, 152 pp.
[7] Sanov I. N., “Svoistvo odnogo predstavleniya svobodnoi gruppy”, DAN SSSR, 1947, no. 57, 657–659 | MR | Zbl
[8] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974, 456 pp. | MR | Zbl